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Abstract

How do improvements in the urban transport infrastructure affect the spatial sort-
ing of residents with different levels of income and education within a city? What are
the welfare effects of improving urban transit once we take into account these pat-
terns of spatial sorting? In this paper, I study the effects of the construction of a bus
rapid transit system (BRT) on the spatial reorganization of residents within the city of
Buenos Aires, Argentina. To do so, I leverage an individual level panel data set of more
than two million residents with which I can describe intra-city migration patterns. I
first find reduced form evidence that the construction of the BRT increased the spatial
segregation between high and low-skilled residents within the city. I then develop a
dynamic quantitative spatial equilibrium model of a city with heterogeneous workers
that allows me to quantify the welfare effects of this BRT system while taking into ac-
count these spatial sorting patterns. With this quantitative framework, I can measure
the average welfare gains for residents that were living near the BRT lines before these
were built. I find that welfare gains were very similar between high- and low-skilled
workers living in the same locations, but very different within skill levels across lo-
cations. Residents living near a BRT line in neighborhoods with the lowest share of
high-skilled residents saw welfare gains close to 1% on average, while residents liv-
ing near a BRT line in neighborhoods with the highest high-skilled share saw welfare
gains around 0.5% on average.
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1 Introduction

How do improvements in the urban transport infrastructure affect the spatial sorting of
residents with different levels of income and education within the city? What are the
welfare effects of these improvements in transport infrastructure once we take into ac-
count these patterns of spatial sorting? Given the world’s rapid urban growth of the last
decades,1 it is no surprise that many cities (especially in the developing world) are in-
vesting large sums in improving their public transport infrastructure.2 The literature on
public transport improvements has shown that these projects tend to increase population
density, land rents, and output in the neighborhoods that are close to the improved infras-
tructure.3 However, one concern that arises is that these improvements in public transport
may displace incumbent low-skilled residents through rent increases, a process often re-
ferred to as “transit-induced gentrification.” As a consequence, these low-skilled incum-
bent residents might suffer welfare losses.4 In this paper, I study how the construction of a
bus rapid transit system5 (BRT) in the city of Buenos Aires, Argentina, affected the spatial
sorting of high- and low-skilled residents,6 as well as the welfare consequences of these
transport infrastructure improvements for the incumbent residents of the neighborhoods
near the new transit lines.

A distinguishing feature of this paper is that it leverages individual level panel data on
the addresses of more than two million residents. By using a panel data set at the individ-
ual level, I can follow residents as they move within the city, which allows me to describe
intra-city migration patterns at a very fine spatial scale. I use these data to contribute to
the literature on the effects of urban transit infrastructure in three ways. First, I document

1The world’s urban population accounted for 34% of total global population in 1960, 55% in 2018, and is
expected to account for 68% of total global population by 2050 (UN, 2018).

2According to Hannon et al. (2020), more than $1.4 trillion will be spent in new light-rail and metro
projects in cities around the world between 2019 and 2025.

3See Redding and Turner (2015), Berg et al. (2017), and Roberts et al. (2020) for surveys of the literature
on the effects of transport infrastructure improvements.

4The phenomenon referred to as “transit-induced gentrification” has been extensively studied in the
urban planning and transportation engineering literature (Chapple and Loukaitou-Sideris, 2019, Dawkins
and Moeckel, 2016, Chapple and Loukaitou-Sideris, 2019, Bardaka et al., 2018, Tehrani et al., 2019), with
varying results, and often not accounting for the endogeneity concerns that might arise from the placement
of the transport infrastructure (see Padeiro et al. 2019 for a review of the literature).

5A bus rapid transit system is a bus-based public transport system that includes dedicated roadways for
buses and platform-level boarding, and assigns priority to buses at intersections where buses may interact
with other traffic.

6I define a resident as low-skilled if she has no post-secondary education, and as high-skilled if she has
at least some post-secondary education.
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the heterogeneous response by high- and low-skilled residents in their intra-city migra-
tion decisions to the improvements in market access generated by the new BRT system.
Second, I develop one of the first dynamic quantitative spatial equilibrium models of a
city that combines commuting and migration decisions taken by forward-looking agents.
Third, I use the dynamic quantitative spatial equilibrium framework with heterogeneous
workers to estimate the welfare effects for high- and low-skilled incumbent residents in
the city. The crucial difference with previous welfare estimates of transport infrastruc-
ture improvements is that, by relying on individual level panel data, I can account for the
changes in migration decisions as a consequence of these infrastructure improvements. In
doing so, I can differentiate between the welfare gains of the residents that were already
living in affected areas before the improvements, and the welfare gains of the residents
who live in the affected areas after a new steady state equilibrium is reached.

Between 2011 and 2017, the city of Buenos Aires opened six lines of a BRT network, the
Metrobus. This network spans 51 kilometers and transports close to a million passengers
a day. Although Buenos Aires already had a robust network of buses and subway lines
that provided coverage for most of the city’s neighborhoods, the new BRT lines resulted
in an average increase in speed of 30% for the buses that went through those avenues
(Kamrowska-Zaluska, 2017). These increases in transport speed led to increases in market
access for commuters located in neighborhoods that were originally less well connected
to locations in the city with high employment density. The effects of this change in market
access are the main focus of this study.

In order to analyze the sorting patterns of residents by skill type, I leverage a uniquely
detailed data source: the electoral register for all election years between 2011 and 2017 for
the city of Buenos Aires, which allows me to track individuals as they change their resi-
dential location within the city. Since voting is compulsory in Argentina, the government
maintains a register with residential addresses for all eligible voters. I have processed this
register for the city of Buenos Aires, and geocoded7 all addresses for more than two million
eligible voters that reside in the city. I use this register, along with other data sources, such
as census data and household surveys, to implement a reduced form analysis that relies
on a historical IV identification strategy. In order to capture the full general equilibrium
effects of the changes in the transport network on every location of the city, I construct a
measure of commuter market access developed by Ahlfeldt et al. (2015) and extended to

7Geocoding is the process of assigning geographical coordinates to an address.
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a setting with heterogeneous workers by Tsivanidis (2019).8 I then examine how changes
in this measure of market access affected the change in the share of high-skilled workers9

in each neighborhood, the change in high- and low-skilled population, the change in pop-
ulation density in each neighborhood, and the change in residential floorspace prices. I
address the endogeneity concerns regarding the placement of the BRT lines by construct-
ing an instrumental variable for the changes in market access that relies on the placement
of a tram system built in the first half of the twentieth century, that was dismantled by
1963. The identifying assumption behind this strategy10 is that the placement of a tram
system that had been decided prior to 1938 should not be correlated with changes in un-
observable confounders between 2011 and 2017. Through this reduced form analysis, I
find that, contrary to the hypothesis of transport-induced gentrification, the Metrobus led
to increases in the high-skilled share mostly in neighborhoods that already had a relatively
high level of high-skilled share, while neighborhoods in the lowest quintile of the distri-
bution of high-skilled share saw a decrease in their high-skilled share as a consequence
of the improvements in transport infrastructure. For the same increase in market access,
a neighborhood at the eightieth percentile of the initial distribution of high-skilled share
saw a proportional increase in its share of high-skilled residents six times higher than a
neighborhood in the twentieth percentile. These patterns of spatial sorting between high-
and low- skilled workers led to an increase in the segregation by skill type in the city.

Having described these sorting patterns between high- and low-skilled workers in a re-
duced form setting, I develop a dynamic model of a city in which residents who are
forward-looking must make migration and commuting decisions each period. On the
production side, I assume that each location produces a location-specific variety of the
consumption good under perfect competition. To do so, they must employ both types of
labor (high- and low-skilled). These assumptions lead to labor demand being spatially
distributed across the city, which in turn motivates the commuting decisions of the resi-
dents. This model draws from the dynamic structure used by Caliendo et al. (2019) and
Balboni (2019) to study questions of regional economics, and from the commuting struc-
ture present in the static models of a city developed by Ahlfeldt et al. (2015) and Tsivani-
dis (2019), which allow for residents to live and work in different locations. I rely on the

8This measure summarizes the total impact of the transit network on firms and residents, and can be de-
rived from a wide class of models, as long as they imply a gravity equation for commuting flows (Tsivanidis,
2019).

9The share of high-skilled residents is defined as the population of high-skilled residents divided by the
total population.

10This type of historical route IV approach was developed by Duranton and Turner (2012) and has been
used frequently in the transportation economics literature (Redding and Turner, 2015).
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individual level migration data constructed from the electoral register to estimate key pa-
rameters of the model. I develop a numerical solution algorithm for the model, which
is based on Caliendo et al. (2019). Having solved the model, I show that it predicts very
similar patterns of spatial sorting as a response to the transport improvements as the ones
found by the reduced form analysis.

Using this framework, I estimate the welfare impact of implementing this BRT system in
the city of Buenos Aires on the residents that were already living near the BRT lines be-
fore they were put in place, which I refer to as incumbent residents. Welfare gains are
measured as the difference in aggregate expected utility in the period prior to the imple-
mentation of the new transport infrastructure between a scenario where the changes in the
transport infrastructure are implemented and a scenario where no change in the transport
infrastructure is implemented. I find that welfare gains were very similar between high-
and low-skilled workers living in the same locations, but very different within skill lev-
els across locations. On average, high-skilled incumbent residents, who lived near11 the
route of a BRT line before the line was put in place, benefited slightly more than low-
skilled incumbent residents, with high-skilled incumbents seeing an average welfare gain
of 1.04%, and low-skilled incumbent residents seeing an average welfare gain of 0.94%.
However, both high- and low-skilled residents that lived near the BRT line that served the
neighborhoods with the lowest proportion of high-skilled residents saw increases in wel-
fare that were, on average, around twice12 the welfare gains perceived by residents that
lived near the BRT line that served the neighborhoods with the highest proportion of high-
skilled residents. Suggesting that the larger increases in population and, consequently, in
housing prices produced by the transport improvements in neighborhoods with higher
high-skilled share offset a larger fraction of the welfare gains for the residents that were
already living there.

Finally, I use the dynamic quantitative framework to study how different counterfactual
configurations of the BRT system would have produced different results in terms of spa-
tial sorting and welfare gains. To do so, I solve for the full equilibrium path of endogenous
variables under different assumptions on which BRT lines were built. I then compare, in
different parts of the city, the welfare gains for incumbents in these counterfactual scenar-
ios to the welfare gains for incumbents obtained from having built the entire BRT system.
I find that, had the government chosen to built only a BRT line going through low-skilled

11Within half a mile of a BRT line.
12The increase was 2.1 times higher for high-skilled residents and 1.8 times higher for low-skilled resi-

dents.
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neighborhoods, the policy would have had a gentrification effect. Budgetary and polit-
ical consideration might lead governments to prioritize infrastructure improvements in
poorer areas, where the share of low-skilled workers is higher. According to my quantita-
tive analysis, doing so would have led to an increase in the share of high-skilled workers in
the areas that initially had a low presence of this type of workers. Moreover, both high- and
low-skilled incumbents in the neighborhoods that initially had a low share of high-skilled
population would have benefited around 30% less13 than if the the full BRT system had
been built. This result suggests that transport improvements that only target low-income
neighborhoods (with a high share of low-skilled residents) could end up displacing some
of the low-skilled residents to which the policy was initially targeted.

This paper contributes to several strands of literature. There is a large body of work that
studies the impact of transport infrastructure improvements on the spatial distribution of
residents and economics activity (Allen and Arkolakis, 2019, Baum-Snow, 2007, Duranton
and Turner, 2012, Gonzalez-Navarro and Turner, 2018, Baum-Snow et al., 2018, Gibbons
and Machin, 2005, Glaeser et al., 2008, Tsivanidis, 2019, Pathak et al., 2017). This paper
contributes to this body of research by providing a general equilibrium framework that
incorporates intra-city migration decisions, and using this framework to study the welfare
effects for incumbent residents of the areas that were close to the transport improvements.

There is also a substantial body of work, especially in recent years, that develops quanti-
tative spatial equilibrium models of cities that incorporate commuting (Allen et al., 2016,
Severen, 2018, Heblich et al., 2020, Tsivanidis, 2019). These studies, however, lack migra-
tion data at the level of spatial aggregation necessary to study intra-city migration within
the context of these models. As a consequence, these papers have not included agents
that must make migration decisions in a dynamic setting. Because I can track individuals
within the city as they change residential location, I am able to develop a dynamic quan-
titative spatial equilibrium model, where residents choose their residential location in a
forward-looking manner.

This paper also contributes to the growing body of work that develops dynamic quanti-
tative spatial equilibrium models for regions or countries (Caliendo et al., 2019, Balboni,
2019, Morten and Oliveira, 2018, Desmet et al., forthcoming, Bryan and Morten, 2019).
Within this body of work, this paper is the first to incorporate commuting, which allows
for workers to live and work in different locations.

1331% less for high-skilled incumbents, and 30% less for low-skilled incumbents.
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Afourth strand of literature to which this paper contributes is the large body of research on
the determinants of gentrification (Almagro and Domínguez-Iino, 2019, David et al., 2017,
Couture et al., 2018, Dragan et al., 2019, Su, 2020). This paper contributes to this body of
research by evaluating the hypothesis that transport infrastructure improvements might
have led to gentrification of neighborhoods that were initially populated predominantly
by low-skilled residents. I do not find that the BRT system implemented in Buenos Aires
led to gentrification (defined as an increase in the share of high-skilled residents) in the
neighborhoods that had an initially low level of high-skill share. I do, however, find that
a more localized transport improvement, targeted only to neighborhoods with low high-
skilled share, would have led to gentrification.

Finally, I contribute to the growing body of literature that studies the effects of improve-
ments in transport infrastructure in developing countries14 (Baum-Snow and Turner, 2017
Fajgelbaum and Redding, 2018, and Tsivanidis, 2019) by examining the impact of the BRT
system implemented in the city of Buenos Aires. This is particularly important, given that
most of the urban growth in the next thirty years will likely take place in developing coun-
tries (UN, 2018), and therefore, understanding the effects of urban transport infrastructure
improvements in the specific context of developing countries has become increasingly rel-
evant.

The paper is organized as follows. In Section 2, I provide a brief background on the city
of Buenos Aires, and on the BRT project that will serve as the main focus of this paper; in
Section 3, I describe the main sources of data used in this paper; in Section 4, I conduct a
reduced form analysis to study the effects of the BRT system on key outcomes; in Section
5, I develop a dynamic quantitative spatial equilibrium model that allows me to study the
welfare effects of the transport infrastructure improvements, as well as analyze counter-
factual scenarios; in Section 6, I explain the estimation procedure for the parameters of the
model; in Section 7, I present the results of the model, and contrast the predictions from
the model with the reduced form results; in Section 8, I analyze the welfare effects of the
transport infrastructure improvements; in Section 9, I examine different counterfactual
scenarios where only a subset of the BRT lines were built; finally, Section 10 concludes.

14See Bryan et al. (2020) for a review of the literature on urban economics in developing countries.
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2 Background

The city of Buenos Aires is the capital and largest city of Argentina, with 2.9 million inhab-
itants.15 Representing 28% of the country’s GDP, it is the economic, political, and cultural
center of Argentina. In this section, I will provide a brief overview of the city’s demo-
graphic composition, as well as of the spatial distribution of economic activity and resi-
dents by skill type. I will also analyze the commuting patterns of residents of the city prior
to the construction of the BRT system. I will then describe the BRT system that was put in
place between 2011 and 2017 in the city, which will be the main focus of my analysis.

2.1 City Structure

Economic activity in the city of Buenos Aires, measured by employment, is highly concen-
trated around the city’s central business district (CBD). Alves et al. (2018) find that 50%
of the formal employment in the city is located within a 4 kilometer radius of the CBD,
in an area that constitutes less than 19% of the surface area of the city. From Figure 1 we
can see that most of the employment is concentrated in 4 of the 15 communes, with 31%
of employment located in commune 1, where the CBD is located.

We can then separate workers between those with at least some post-secondary education
(which I will call high-skilled), and those with at most a completed secondary education
(which I will call low-skilled). Figure 2 shows the fraction of workers by skill type that
work in each commune. We can see that high-skilled workers are more spatially con-
centrated in commune 1, around the CBD, while low-skilled workers are more spatially
dispersed. This is consistent with high-skilled workers being employed more intensively
in industries that tend to be more spatially concentrated around the CBD.

In terms of the spatial distribution of residents by residential location, we can see in Figure
3 that there is a clear decreasing gradient in the high-skilled share—defined as the share of
residents that are high-skilled in a location—from the north-east to the south-west. This
exact same pattern can be seen by looking at Figure 4, that shows the average housing
prices (in terms of US dollars per square meter) by district. We can see that the most

15The entire metropolitan area surrounding the city of Buenos Aires constitutes the third largest metropoli-
tan area in Latin America, with a population of 14.8 million, and represents 33% of the countries population.
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expensive districts are in the north-eastern side of the city, while the least expensive parts
of the city are in the southern and south-western districts.

2.2 Commuting in Buenos Aires

With over 130 bus lines running through the city and six subway lines connecting the
periphery of the city with the CBD (see Figure 5), Buenos Aires already had a robust urban
transportation network prior to the construction of the Metrobus. As a result, almost 80%
of trips within the city done in 2010 were done either by public transport (bus, subway or
train), or by walking or biking. Table 1 shows the percentage of trips done in 2010 within
the city by mode of transport by both high-skilled and low-skilled residents. We can see
that although high-skilled residents used cars at a slightly higher rate, the majority of trips
for both high- and low-skilled residents were done by public transit, walking, or biking
(81% of trips for low-skilled residents, and 73% of trips for high-skilled residents).

2.3 Metrobus: The BRT System of the City of Buenos Aires

Between 2011 and 2018, the city of Buenos Aires built a system of bus rapid transit (BRT)
lines that spans 50.5 km (31.4 mi). The main objective of this infrastructure project was
to improve commute times by bus between the residential areas in the periphery of the
city and the neighborhoods with the highest employment density. Each line in the system
is composed of two to four dedicated bus lanes, with physical separation from regular
traffic, and platform-level boarding. By 2016, the system was composed of five lines that
functioned full time.16 Figure 6 shows the placement of these five lines in the city.

The first line of the Metrobus, the Juan B. Justo Line, was inaugurated in May 2011. This
line is estimated to transport around 100,000 passengers a day, and reduce commuting
costs along the Juan B. Justo Avenue by 40% according to government estimates17. The 9
de Julio Line and the Sur Line were inaugurated in 2013. The 9 de Julio Line joins the two
main train stations of the city, and goes across the CBD. This line transports an estimated

16A sixth line, the 25 de Mayo line operates only during rush hour, was built on a highway, and runs mid-
distance and long-distance buses that connect the suburban metropolitan region to the city center. Since this
line does not have any intermediary stops within the city proper, I will not include it in my main analysis.

17This would translate to a reduction of 44 minutes a day, or 7 days per year for the average commuter of
this line, according to government estimates.

9



250,000 passengers a day, and reduces bus travel time by 50% along the 9 de Julio Avenue
according to the government’s estimates. The Sur Line serves the southern part of the
city (which includes most of the lowest income neighborhoods in the city). The Metrobus
Sur Line also serves approximately 250,000 passengers a day, it has reduced travel times
by 15% according to the government’s estimates, and has increased ridership by 30%.
The Cabildo Line and the 25 de Mayo Line were inaugurated in 2015. The Cabildo Line is
estimated to serve around 200,000 passengers and was designed to connect the periphery
of the city with the subway line D (see Figure 2 for a map of both the subway lines and the
Metrobus lines). The San Martin line was inaugurated in 2016, and is estimated to have
decreased transport times for buses along the line by 20%.

3 Data

The two main geographic units used in the analysis are the census tracts (radio censal) for
the city of Buenos Aires, and the voting districts (circuito electoral) for the city of Buenos
Aires. The city is divided into 3555 census tracts, which are the smallest geographical unit
at which the data from the national census is reported. Census tracts in the city have an
average surface area of 0.05 square kilometers (0.02 square miles), and an average popu-
lation of 813 people. Voting districts are much larger, and divide the city into 167 regions,
with an average surface area of 1.21 square kilometers (0.47 square miles), and an average
population of 14952.

As my main source of data on residential location at the individual level, I use the electoral
registries for the years 2011, 2013, 2015, and 2017. Voting is compulsory for all Argentine
citizens between the ages of 18 and 70, and the polling place for each citizen is decided
based on their residence, so the government keeps an up-to-date record of every person’s
address, which is updated for every election. I have obtained the electoral register for
the city of Buenos Aires for the years 2011, 2013, 2015, and 2017. These registers include
the National ID number, name, sex at birth, birth year, residential address as free text,
and a description of occupation or profession for every person that is eligible to vote. I
have cleaned and geocoded (assigned GPS coordinates) almost all addresses18 in the city
of Buenos Aires (which account for approximately 2.5 million people).

18One limitation with these data is that I require a full address (street name and number) in order to
assign geographical coordinates to a citizens residential location. Therefore, I cannot locate citizens that live
in disadvantaged low-income settlements that do not have a formal address. Because of this limitation, I
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One potential concern with these data arises from the fact that residence changes are
self-reported, which might imply under-reporting of changes in residence or a lag in the
change of residential addresses. Although I cannot rule out this possibility, and in fact it is
highly likely that these data does not reflect the exact residential location of every citizen at
each point in time, I show that the cross-sectional distribution of population in 2011 for the
city of Buenos Aires that is implied in the electoral register data is highly correlated with
the census data from the 2010 census. Figure 7 shows a binscatter plot that compares the
number of voters from the electoral registry data that were geocoded in each census tract
in 2011 with the population in each census tract in 2010, obtained from the 2010 national
census. As we can see in this figure, there is a positive correlation between the 2010 census
population and the number of voters geocoded from the electoral registry, with the 2010
census population being above the geocoded population for every bin average, which is
consistent with the number of eligible voters being a fraction of the total population in
each census tract.

I have obtained a restricted version of the the Annual Household Survey for the city of
Buenos Aires (Encuesta Anual de Hogares) that details the employment location of each
household member surveyed that is employed for every year between 2010 and 2019.
With these data, I estimate the fraction of high-skilled and low-skilled workers that work
in each commune of the city. I then employ the land use data census for the year 2011 to
build a measure of employment by district within each commune, under the assumptions
that employment is distributed in proportion to the fraction of land used for commercial
and productive purposes within each district, and that the skill-share is constant across
districts within a commune.19

I use ArcMap’s Network Analysis tool to construct a model of the city’s transportation
network before and after the BRT lines were built. I then calculate the minimum com-
mute time between census tracts using Dijkstra’s algorithm to measure the changes in
commute times after the BRT was put in place.20 I also use the 2010 mobility survey for
the City of Buenos Aires (Encuesta de Mobilidad Domiciliaria) to calculate average travel
speeds by mode before the BRT was put in place, as well as to estimate the semi-elasticity
of commuting with respect to travel times for high- and low-skilled residents in the model.

can only geo-locate approximately 95% of the electoral register. See Appendix A for more information on
this process.

19See Appendix A for details.
20See Appendix A for more information on how the commute times are calculated.
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Regarding floorspace prices, I use the ask price for a subset of all listings from a major on-
line marketplace from 2009 to 2017, as well as additional information such as the number
of bedrooms, surface area, address, and GPS coordinates. With these data, I estimate the
average housing price per square meter by district and by census tract.

As mentioned above, I employ the land use data from the 2011 land use map (Relevamiento
de Usos del Suelo) produced by the government of the city of Buenos Aires. This data set
contains land use information on every parcel of land in the city and, crucially, allows
me to distinguish between land used for commercial and productive purposes from land
used for residential purposes or other uses.

Finally, I use data from the 2010 national census,21 as well as from the National Household
Survey (Encuesta Permanente de Hogares) to supplement the previously described sources
of data.

3.1 Defining High- and Low-Skilled Residents

The electoral registry data includes a free text description of the occupation of each citizen.
I processed this information and matched each description to a one-digit occupation group
in the International Standard Classification of Occupations (ISCO).22 Table 11 shows the
ten one-digit occupation groups of the ISCO.

I define a high-skilled worker as a worker who has at least some post-secondary edu-
cation. From the National Household Survey for the city of Buenos Aires in 2010, we
can calculate the fraction of workers within each one-digit ISCO occupation group that is
high-skilled in the city of Buenos Aires according to this classification. We can see in Fig-
ure 8 that for five of the occupation groups,23 the majority of workers in those occupations
are low-skilled. For the remaining five occupation groups,24 the majority of the workers
in those occupations are high-skilled in the city of Buenos Aires. Therefore, I classify as a
high-skilled worker every resident of the city categorized as being in an occupation group

21The following census was scheduled to occur in 2020, but has been postponed due to the emergency
sanitary measures put in place as a consequence of the COVID-19 pandemic.

22See the Appendix A for more information on this matching process.
23These are: armed forces, elementary occupations, plant and machine operators, and assemblers, craft

and related trades workers, and service and sales workers.
24Which are: managers, professionals, technicians and associate professionals, clerical support workers,

and skilled agricultural, forestry and fishery workers.
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where the majority of the workers in that occupation are high-skilled, and I classify as a
low-skilled worker every resident of the city in an occupation group where the majority of
the workers in that occupation are low-skilled. Figure 9 compares the share of high-skilled
residents by census tract calculated using the electoral register data from 2011 to the share
of high-skilled residents by census tract obtained from the 2010 census.25 We can see in
this graph that there is a positive and significant correlation between both measures.

4 Reduced Form Analysis

4.1 Commuter Market Access: Using the Model to Measure the Impact
of the BRT System

In order to capture the full general equilibrium effects of the changes in the transport net-
work due to the construction of the Metrobus BRT on every location of the city, I construct
a measure of commuter market access developed by Ahlfeldt et al. (2015) and Tsivanidis
(2019). This measure summarizes the total impact of the transit network on firms and res-
idents, and can be derived from a wide class of models, as long as they imply a gravity
equation for commuting flows (Tsivanidis, 2019). In Section 5, I derive this measure within
the dynamic framework developed in this paper. I show that the commuter market access
(CMA) for a resident of skill-type g living in a residential location (district or census tract)
n at time t can be defined as

CMAgn,t =
∑
j

(
wgj,t
dnj,t

)θg
.

Where dnj,t = exp(κτij,t) are the commute costs associated with commuting between i and
j, with τij being the minimum commute time between i and j calculated using Dijkstra’s
algorithm, and κ being the semi-elasticity of commute costs to commute times; wgj,t is the
model-consistent wage for a worker of type g that works in workplace location j at time t,
and can be calculated with information on the spatial distribution of employment popu-
lation and residential population by skill type at a given year (given parameter estimates);
and θg is the semi-elasticity of commute shares with respect to commute costs (dnj,t).

25Where high-skilled is defined as having at least some post-secondary education.
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Given parameter estimates26 for θg and κ, we can calculate these measures of market ac-
cess for 2011 by using data on employment population at the district level and residential
population at the census tract level, as well as commute times calculated through a com-
muting model before the BRT was put in place. This will result in a vector of market access
{CMAgn,2011}g∈{h,l},n∈I for every residential location n and both skill types g in 2011. Fol-
lowing Tsivanidis (2019), I then calculate {CMAgn,2017}g∈{h,l},n∈I by fixing the employment
and residential population at 2011 levels and by changing the commute costs to reflect the
new commute times with the full BRT put in place. I fix the employment and residen-
tial population at 2011 levels in order to abstract from endogenous changes in population
that might bias the estimation.27 I then calculate the change in the logged market access,
∆2011−2017CMAgn,t, as the measure that will allow me to capture the full general equilib-
rium effects of changes in the transport network on the outcomes analyzed in this section.

Figures 10 and 11 show the market access measure estimated for every census tract in the
city in 2011. We can clearly see two things in these maps: first, market access is higher
near the subway lines and closer to the CBD, where most subway lines converge; sec-
ond, although the market access measure for high- and low-skilled workers are clearly
not identically distributed across census tracts, there is a strong correlation between these
measure. In fact, the estimated Pearson correlation coefficient between these two measures
at the census tract level in 2011 is 0.99.

In Figures 12 and 13, we can see that the change in commuter market access for both high-
and low-skilled workers decreases with distance to the new BRT lines, and increases with
distance to the CBD. This is consistent with the fact that places closer to the BRT saw a
larger proportional increase in their commute speeds, while places further from the CBD
were able to benefit relatively more from these increases in speed, since they translated
into larger decreases in commute times towards the major areas of employment. More-
over, the changes in market access for high- and low-skilled workers are highly correlated.
In fact, the estimated correlation coefficient between changes in market access for high-
and low-skilled workers is 0.98. Due to this high degree of correlation between both mea-
sures, I conduct the main reduced form analysis by regressing changes in the outcomes
of interest on changes in the commuter market access measure for high-skilled workers.

26See Section6 for details on how these parameters are estimated.
27In Appendix B I show that this assumption does not affect the main results from the reduced form

analysis.
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All the main results hold when changes in market access for low-skilled workers are used
instead.28

4.2 Identification Strategy: Instrumenting BRT Placement With Histor-
ical Tramway

The main identification concern when studying the effects of transport infrastructure is
that the placement of this infrastructure is clearly not randomly allocated. In particular,
one might worry that the BRT lines were placed such that they served neighborhoods that
had specific unobserved characteristics, such as a secular population trend (either decreas-
ing or increasing), that would bias the OLS results. In order to address these concerns, I
use a historical route IV approach29 based on Duranton and Turner (2012).

In the early twentieth century, Buenos Aires had a vast system of electric trams that con-
nected the city center to the suburbs of the city. In the 1920s, privately operated buses
started competing with the trams by running parallel to the tramways and often outpac-
ing the tramcars in order to lure passengers that were waiting for the trams (Singh, 2018).
Due in part to this competition and in part to the construction of five subway lines in the
following decades, the trams saw a steady decrease in ridership between the late 1930s and
the 1960s. In 1963, the tramway system was finally dismantled. The bus lines, however,
continued operating on essentially the same routes that the old tramway system followed.
When the Metrobus BRT lines were built, they were chosen so as to follow existing bus
routes, with the added restriction that they had to be built on large two-way avenues that
allowed for the construction of boarding platforms and exclusive lanes for buses.

Given that many of the bus routes were historically determined by the placement of the
tram system, I construct an instrument based on the tramway routes that were built be-
fore 1938 and that ran through large two-way avenues. Figure 14 shows the placement of
these tramway routes and the Metrobus BRT system, we can see that there is a clear spatial
correlation between the two. The instrument is constructed by calculating commute times
assuming that the BRT was built following the tramway routes, using those times to cal-
culate a measure of market access for each residential location, and then calculating the

28See Appendix B for reduced form results using changes in the commuter market access measure for
low-skilled workers.

29This type of identification strategy has been used frequently in the transportation economics literature
(Redding and Turner, 2015)
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change in market access between 2011 and this hypothetical scenario. This hypothetical
change in market access is used to instrument for the change in market access calculated
using the actual placement of the BRT. The identifying assumption is that the placement
of the tramway routes decided prior to 1938 is not correlated with contemporary changes
in unobservable variables that might correlate with the placement of the BRT and affect
the outcomes of interest directly.

In Table 3, we can see the results from the first stage regressions of the 2SLS IV estimation
for every specification that is used in the following section. We can see that the historical
IV instrument has indeed a very strong first stage, with Cragg-Donald Wald F statistics
that range from 1470 to 277. With these values of the F-statistics we can confidently reject
the null hypothesis of weak instruments in the test proposed by Stock and Yogo (2005).30

We can also gather from these regressions that the coefficient for the regression of observed
changes in market access on instrumented changes in market access is positive and signif-
icant, as expected given the spatial correlation between the tram lines and the BRT lines.

4.3 Main Specification and Results

In this section, I analyze the effects of improving the transport infrastructure through the
construction of the BRT system in Buenos Aires on the share of high-skilled residents31 in
each census tract, the average floorspace price in each census tract, the population density,
and the population density by skill type in each census tract. In order to do so, I estimate
the following equation through OLS and by instrumenting the change in market access
(defined in Subsection 4.1) with a historical IV (defined in Subsection 4.2):

∆Y = α + β1∆CMA+ β2HS share0 + β3∆CMA×HS share0 + Λ + ε. (1)

Where ∆Y is the change in the outcome of interest; ∆CMA is the change in the commuter
market access as defined in Subsection 4.1 between 2011 and 2017 due to the construction
of the BRT; HS share0 is intended to capture the initial differences in the high-skilled share

30The null hypothesis of weak instruments can also be rejected for the F-test proposed by Sanderson and
Windmeijer (2016).

31The share of high-skilled residents in a census tract i at time t is defined as Lh
i,t

Lh
i,t+Ll

i,t

where Lg
i,t is the

total population of skill type g residing in i at time t.
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between census tracts, and is calculated as the average high-skilled share for all census
tracts that are contiguous to a given census tract32; Λ is a set of potential controls, such as
fixed effects at the neighborhood level; and ε is the error term in each regression.

Table 4 shows the results of estimating equation 1 both by OLS and IV for the change in
the high-skilled share by census tract between 2011 and 2017. We can first see from these
results that while the IV estimation in column 2 results in a positive and significant co-
efficient for the change in market access, the OLS estimation produces a non-significant
coefficient (with negative sign). This result suggests that the placement of the BRT might
have favored areas where the high-skilled share had a decreasing secular trend, resulting
in a negative bias of the coefficient. From the IV estimation, we find that a 1% change in
market access leads to a 0.2% change in the high-skilled share. In columns 3 and 4, we can
see that once we include an interaction term between the initial high-skilled share and the
change in market access, the IV and the OLS estimates become very similar to one another.
Both of these estimates show that, although the high-skilled share increased on average
as a consequence of the increase in market access, this effect was not equal across neigh-
borhoods. In census tracts with a higher initial high-skilled share, the high-skilled share
increased more as a consequence of the increase in market access. In fact, using the results
from column 4 we see that the derivative of ∆ log(CMA) with respect to ∆ log(HS share) is
equal to 0.1 for a census tract at the twentieth percentile of the initial high-skilled share dis-
tribution,33 and equal to 0.6 for a census tract at the eightieth percentile of the distribution
of initial high-skilled share. Finally, these results are robust to controlling for neighbor-
hood34 fixed effects (although the significance level decreases due to loss of power in the
estimation), which suggests that these results are not driven by differential effects across
neighborhoods. Taken as a whole, these results imply that the BRT increased segregation
by skill type within the city, by increasing the high-skilled share at a higher rate in census
tracts that had an initially higher level of high-skilled share.

As an alternative way to study the different effects that changes in market access had on
the share of high-skilled residents for census tracts in different parts of the distribution of
initial high-skilled share, I divide the sample of census tracts into five groups according
to the quintiles of the distribution of initial high-skilled share, and estimate the following

32I use this measure in order to avoid mechanical correlations between the initial high-skilled share and
the change in high-skilled share. All coefficients are not statistically different at 5% level when using the
actual high-skilled share instead of this measure in the regressions.

33Recall that this is not the actual initial high-skilled share distribution, but the average distribution for
all the census tracts contiguous to a given census tract in 2011.

34Every census tract is included in a neighborhood, and the city is divided into 48 neighborhoods.
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regression for each group:

∆HS share = α + β1∆CMA+ ε. (2)

Figure 15 shows the results for the β1 coefficient of estimating equation 2 using the his-
torical IV strategy for each quintile of the initial high-skilled share distribution. In this
graph, we can see that for census tracts in the lowest quintile of the distribution of the
initial high-skilled share, the relationship between changes in market access and change
in the high-skilled share is actually negative. Implying that an increase in market access in
census tracts in the lowest quintile reduced the high-skilled share. For all the subsequent
quintiles, the point estimates are positive and increasing in the initial high-skilled share
(although they are not statistically distinguishable at a 10% level), with the exception of
the coefficient for the top quintile.

In Table 5, we can see that the same patterns observed in the effect of market access on
the high-skilled share can be observed in the effect of market access on floorspace prices.
On average, a 1% increase in market access increased the average price per square meter
of residential housing in a census tract by 0.3% (column 2). However, this effect varied
by the initial share of high-skilled resident in the census tract (columns 3, 4, and 5). A 1%
increase in market access in a census tract at the twentieth percentile of the initial high-
skilled distribution increased residential floorspace prices on average by 0.3%, while a 1%
increase in market access in a census tract at the eightieth percentile of the initial high-
skilled distribution increased residential floorspace prices 1%.

Table 6 shows the results of estimating equation 1 by IV for the changes in total population,
population of high-skilled residents, and population of low-skilled residents by census
tract. We can see that total population, as well as population by both skill types increased
more in census tracts with a higher initial high-skill share. A 1% increase in market access
led to an increase of the high-skilled population of 0.6% on average in a census tract at
the twentieth percentile of the initial high-skilled share distribution, while the same same
1% increase in market access led to an increase of the low-skilled population of 0.7% on
average in a census tract at the same twentieth percentile. Conversely, a 1% increase in the
market access in a census tract at the eightieth percentile of the initial high-skilled share
distribution led to an increase of the high- and low-skilled population of 1.1% and 1.0%
respectively.
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5 Model

Most quantitative spatial equilibrium models of a city rely on comparative statics for wel-
fare analysis (e.g. Tsivanidis, 2019, Ahlfeldt et al., 2015). This analysis can tell us the av-
erage welfare gains for residents living at a specific location after the changes of interest
have occurred, and a new static equilibrium has been reached. We know, however, that
residents are mobile within a city, and can change their residential location as a response
to changes in the city’s fundamentals (such as transport infrastructure improvements).
Therefore, in order to analyze the welfare gains for residents living in each location be-
fore the improvements in transport infrastructure were put in place, I develop a model
that can incorporate migration decision by forward-looking agents explicitly. This model
draws from the dynamic structure of Caliendo et al. (2019) and Balboni et al. (2020), and
from Ahlfeldt et al. (2015) and Tsivanidis (2019) in terms of the commuting structure, that
allows workers to work and live in different locations within the city.

5.1 Setup

A city is composed of I residence locations (indexed by i or n), and J workplace loca-
tions, (indexed by j or s). I assume that there is a fixed mass L of atomistic residents in
the city35 that are infinitely lived, and who must decide how much to consume, where
to work, and where to live each period. These residents can either be high-skilled or
low-skilled (indexed by g ∈ {h, l}). Each period, residents start in a residence location,
which will depend on their choices from the previous period. They then observe a vec-
tor of idiosyncratic match productivities for each workplace location. They take wages
in each location as given, as well as commute costs from their residence location. With
this information, they choose a workplace location for that period. Once they know their
workplace location, and have obtained a wage income discounted by the commute cost
of commuting from their residence location to their workplace location, they choose how
much to consume of the freely traded consumption bundle and of the floorspace (housing
services) available in their residence location. Having consumed the consumption bun-
dle and the housing services, they observe a vector of idiosyncratic preference shocks for
each residence location for the next period. With this information, they choose a residence

35This is a closed city model. This assumption has been made mostly due to data limitations, since I have
limited information on migration patterns for individuals between the city and the rest of the country (or
the world), as well as for modeling convenience.

19



location for the next period. If they decide to leave their current location, they pay an
origin-destination specific moving cost.

Production in each workplace location is characterized by a static problem. Each location
produces a variety of the final consumption good36 under perfect competition, employing
both types of labor (high- and low-skilled).

I assume a fixed supply of floorspace in each residence location, which, along with ag-
gregate floorspace demand by each skill-type in each location, determines the floorspace
price in that location for that period. I also assume that all floorspace is owned by an
absentee landlord to whom all rents are payed.

5.2 Resident’s Problem

5.2.1 Consumption Problem

Given a residential location i and a workplace location j, a resident of skill type g ∈ {h, l}
will have an intra-period utility function at time t defined as

U g
ij,t =

(
cgij,t
α

)α(Hg
R,ij,t

1− α

)1−α

.

Where cgij,t is the level of consumption of the freely traded numeraire consumption good
for a resident of skill type g, and Hg

R,ij,t is the level of housing services or residential
floorspace consumed by a resident of skill type g.

I assume that a resident of i that works in workplace location j earns a wage income wgj,tεj,t

dij,t
,

wherewgj,t is the competitive wage payed at workplace location j for a worker of skill type
g, εgj,t is the idiosyncratic match-productivity shock for location j, and dij,,t is the commut-
ing cost37 between residential location i and workplace location j. The the consumer’s

36Consumers will consume a CES bundle of these varieties.
37Following Ahlfeldt et al. (2015), I define dij,t = exp(κτij,t), where τij,t is the average commute time in

minutes between i and j at time t, and κ is the semi-elasticity of commute costs with respect to commute
times. I make the simplifying assumption that there is only one mode of transport, which includes walking,
and public transportation. As discussed in Section 2, the vast majority of trips within the city for both high-
and low-skilled workers were done either walking o by taking public transport.
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intra-period problem can be expressed as

max
{cgi,t,H

g
R,ij,t}

Cg
ij,t =

(
cgij,t
α

)α(Hg
R,ij,t

1− α

)1−α

subject to cgij,t + rRi,tH
g
R,ij,t =

wgj,tε
g
j,t

dij,t
.

Where rRi,t is the price of a square meter of residential floorspace in location i. I assume
that the housing rents are payed to an absentee landlord who does not consume goods or
services in the city.

The solution of the consumer’s intra-period problem implies

cg∗ij,t = α
wgj,tε

g
j,t

dij,t
, (3)

Hg∗
R,ij,t =

(1− α)

rRi,t

wgj,tε
g
j,t

dij,t
. (4)

Which implies an indirect utility function

Cg∗
ij,t =

wgj,tε
g
j,tr

α−1
Ri,t

dij,t
.

5.2.2 Dynamic Problem

The agent’s full dynamic problem at time t can be expressed as the following Bellman
equation:

vgn,t = max
{i,j}

{
Cg∗
nj,t + βEt[v

g
i,t+1]− µgni + ηgi,t

}
(5)

Where i is the residential location that the agent chooses for t + 1, and j is the workplace
location that the agent chooses for period t, µgni is the moving cost required to move from
residential location n to location i, which is assumed to be constant over time, and ηgi,t is
the idiosyncratic preference shock on residential location choices for period t + 1, which
is observed in period t.

Note that the maximization problem is separable between choosing the optimal workplace
at time t, and choosing the optimal residence location for next period i. Therefore, we can
write

vgn,t = max
{j}

{
wgjtε

g
jtr

α−1
Rn,t

dnj

}
+ max

{i}

{
βEt[v

g
i,t+1]− µgni + ηgi,t

}
.
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Taking expectations with respect to the joint distribution of both idiosyncratic shocks (εj
and ηi), we get

E0v
g
n,t = E0

[
max
{j}

{
wgj,tε

g
j,t

dnj,t
rα−1
Rn,t

}]
+ E0

[
max
{i}

{
βEt[v

g
i,t+1]− µgni + ηgi,t

}]
.

Let V g
n,t = E0v

g
n,t, then it follows from the Markovian structure of this dynamic problem

that Et[vgn,t+1] = V g
n,t+1, therefore,

V g
n,t = E0

[
max
{j}

{
wgj,tε

g
j,t

dnj,t
rα−1
Rn,t

}]
+ E0

[
max
{i}

{
βV g

i,t+1 − µ
g
ni + ηgi,t

}]
. (6)

We can solve both expectations by using the fact that εgj,t is distributed extreme value type
I, and ηgi,t is distributed extreme value type II (see Appendix C). By solving these expecta-
tions we obtain

V g
n,t = T̃gΦ

1
θg

Rgn,tr
α−1
Rn,t + νg ln

I∑
i=1

exp
(
βV g

i,t+1 − µ
g
i,n

) 1
νg . (7)

Where ΦRgi,t =
∑

j

(
wgj,t
dij,t

)θg
, θg and T̃g are the shape and scale parameters of the CDF of εgj ,

and νg is the scale parameter of the CDF of ηgi .

5.3 Neighborhood Migration Flows

Let min,t be the fraction of agents that are residing in location n at the beginning of period
t, and move to location i by the end of period t. From the distribution of idiosyncratic
preferences ηn,t we can obtain the following equation:38

mg
in,t =

[
exp(βV g

i,t+1 − µ
g
in)
] 1
νg∑N

m=1

[
exp(βV g

m,t+1 − µ
g
mn)
] 1
νg

(8)

38See Appendix C for derivation.
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5.4 Labor Supply

As in Tsivanidis (2019), the probability of a worker that lives in i at time t decides to work
in location j is:

Πj|tig =
(wgj,t/dij,t)

θ∑
s

(
wgs,t
dis,t

)θ =
(wgj,t/dij,t)

θ

ΦRgi,t

. (9)

Therefore, labor supply at time t for workplace location j will be

LgFj,t =
I∑
i=1

Πj|tigL
g
Ri,t, (10)

where LgRi,t is the residential population at time t in location i of workers of type g.

5.5 Residential Population

Let mg
in,t be the fraction of agents of type g that are residing in location n at the beginning

of period t, and move to location i by the end of period t. It must be then that

LgRi,t =
I∑

n=1

mg
in,tL

g
Rn,t−1 (11)

5.6 Production

I will assume there are J varieties of the consumption good, differentiated by location of
production, and supplied in a competitive market. Consumers have CES preferences over
each variety, with elasticity of substitution σ > 1. Producers solve a static problem each
period t, where they choose their demand for low-skill and high-skill effective units of
labor, in order to maximize their profits in that period. I assume firms produce using an
Cobb-Douglas production function such that the output of the variety of the final good
produced in location j at time t will be:

qj = Aj(L̃
l
jt)

ρj(L̃hjt)
(1−ρj)
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Where Aj is the exogenous TFP from producing in j, L̃hFj,t is the demand at time t in loca-
tion j for effective units of high-skill labor, and L̃lF j,t is the demand at time t in location j
for effective units of low-skill labor. I allow ρj to vary by workplace location in order to
capture the fact that firms in different parts of the city may have different skill intensities.39

Taking first order conditions of the producers problem, one finds that

whj,tL̃
h
Fj,t = (1− ρj)Xjt, (12)

wlj,tL̃
l
F j,t = ρjXjt. (13)

Where Xjt is the total expenditure on variety j at time t. From the CES demand for
varieties of the consumption good, we know that in equilibrium Xjt = p1−σ

jt X , where
X =

∑I
i=1 α

∑
g∈{h,l} ȳigt is the total expenditure on consumption in the economy, and

ȳigt is the mean income of a worker of type g in location i at time t. Perfect competi-
tion will imply that the price of each variety is equal to its marginal cost at each time
t, pjt = A−1

j (wljt)
ρj(whjt)

(1−ρj). Combining these results we can express40 labor demand
at each location j at time t for each skill type g as a function of the wage vector wt =

{{whjt}Jj=1, {wljt}Jj=1},
L̃gFj,t = fjgt(wt) (14)

Finally, we must relate the effective units of labor of each skill type to the physical units
of labor of that skill type (LgFjt). Let ε̄gjt be the average worker-match productivity for a
worker of skill type g, at time t in workplace location j. This average productivity can be
computed as41

ε̄gjt = Tg

I∑
i

π
− 1
θg

j|tig
1

dijt

πj|tigL
g
Rit∑I

n πj|tngL
g
Rnt

. (15)

It follows then from the definition of the worker-match productivities that

LgFjt =
L̃gFjt
ε̄gjt
∀ g ∈ {h, l}.

39The vector of ρj for all j will be calibrated using the skill share of employment observed in 2010 for each
workplace location.

40See Appendix C for the derivation.
41See Appendix C for derivation.
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5.7 Labor Market Clearing

From equation (10) we obtain the labor supply in workplace j at time t of skill type g,
given a residential population distribution {LgRi,t}Ii=1 of skill type g. At the same time,
from equation (14) we know that labor demand can be expressed as a function of the
wage vector w̄t. Therefore, labor market clearing implies

LgFjt =
fjgt(wt)

ε̄gjt
=

I∑
i=1

(wgj,t/dij,t)
θ∑

j

(
wgj,t
dij,t

)θLgRi,t. (16)

5.8 Floorspace Market Clearing

Each residential location has a fixed amount of floorspace H̄Ri. Let ȳgi,t be the expected
income of a resident of i of skill type g at time t, where the expectation is taken with
respect to the distribution of match productivities. From equation (4) we know that the
aggregate demand for housing in location i is

HS
Ri =

∑
g∈{h,l}

LgRi,tȳ
g
i,t

rRi,t
(1− α).

Solving for ȳgi,t we find that42

HS
Ri =

∑
g∈{h,l}

LgRi,tT̃gΦ
1
θg

Rgi,t

rRi,t
(1− α).

Market clearing for residential floorspace requires that the supply for residential floorspace
in location i (H̄Ri) be equal to the demand for residential floorspace in location i, for all
residential location, at every time t, which implies that

rRi,t =

∑
g∈{h,l} L

g
Ri,tT̃gΦ

1
θg

Rgi,t(1− α)

H̄Ri

. (17)
42See Appendix C of this derivation.
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5.9 Equilibrium Definitions

In this model, the endogenous state of the economy at time t is determined by the vector
of residential labor allocation {LgRi,t}, and the vector of workplace labor allocation {LgFj,t}.
The time varying fundamentals of this economy are the pairwise transport time43 from
each residential location to each workplace location, tij . The constant fundamentals are
the pairwise moving costs µgin, and the workplace productivities Aj . The parameters in
this model are assumed constant and are: the semi-elasticity of commute costs with re-
spect to commute times (κ), the residential location migration elasticities for each worker
type (νg), the parameters that govern the distribution of idiosyncratic workplace match-
productivities for each worker type (Tg and θg), the time discount factor (β), the param-
eters that determine the shape of the production function at each workplace location j,
{ρjg}, the parameter that determines the shape of the utility function (α), and the elastic-
ity of substitution of the CES consumption bundle (σ). Following Caliendo et al. (2019) I
will now define three equilibrium concepts in this model (for a given value of the model
parameters), a temporary equilibrium, a sequential equilibrium, and a stationary equilibrium.

Definition 1. Given a vector of residential location population {LgRi,t} at time t, a pairwise trans-
port time matrix {dij}, and a vector of workplace productivities {Aj}, a temporary equilibrium
is defined as a vector of wages for each worker type g ∈ {h, l}, {wgj,t}, and residential floorspace
rents {rRi,t} that satisfy the equilibrium conditions of the static sub-problem, which is determined
by the labor market clearing condition expressed in equation (16) for each worker type g ∈ {h, l},
and the residential floorspace market clearing condition expressed in equation (17).

Note that in this simple framework, at any time t, once the residential location vector
is determined, the static problem can be subsumed into finding the vector of wages that
equalizes labor demand and labor supply in each workplace location for each worker type,
and the vector of rents that equalizes floorspace demand and floorspace supply in each
residential location. Once all the wages and rents are determined for period t, individual
consumption of the numeraire consumption good and of residential floorspace follows
from the solution to the worker’s consumption problem, and the market for the final con-
sumption good must clear by Walras’s Law. Having defined the temporary equilibrium,
I now proceed to define the sequential competitive equilibrium for this model given a
path of exogenous fundamentals, and given parameter values. Let mg

t = {mg
in,t}

I,I
i=1,n=1,

43The pairwise transport cost dij is calculated as exp(κtij), where κ > 0 is the semi-elasticity of commute
costs with respect to commute times.
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LgRt = {LgRi,t}Ii=1, LgF t = {LFj,t}Jj=1, wgt = {wgj,t}Jj=1, and V g
t = {V g

i,t}Ii=1 be the residential
location migration shares, residential population, workplace population, wages, and life-
time expected utilities for each worker type g ∈ {h, l} respectively. Following Caliendo
et al. (2019) I define the sequential competitive equilibrium in this model as follows.

Definition 2. Given an initial distribution of residential population for each worker type LgR0, an
initial distribution of employment for each worker type LgF0, and a known sequence of time-varying
and non time-varying fundamentals ({dij,t}I,J,∞i=1,j=1,t=1, {Aj}Jj=1, and {µgin}

I,I
i=1,n=1), a sequential

competitive equilibrium is a sequence of {LgRt, L
g
F t,m

g
t , w

g
t , V

g
t }∞t=0,g∈{h,l} that solves equations

(7), (8), (11), and the temporary equilibrium at each time t.

We can now define a stationary equilibrium for this model as follows:

Definition 3. A stationary equilibrium of this model is a sequential competitive equilibrium
such that all the elements of the vector {LgRt, L

g
F t,m

g
t , w

g
t , V

g
t }∞t=0 are constant for all t and for all

worker skill type g.

Note that, as always, in a stationary equilibrium all the fundamentals must be constant for
all t, since a change in fundamentals would lead to changes in the endogenous variables
of the model through time. Also, note that in a stationary equilibrium individual residents
may still move from one residential location to another, or from one workplace location to
another, in so far as the aggregate populations in each location, and the migration flows
between locations for each worker skill type stay constant.

5.10 Model Solution

In this section I will describe how to solve for the full transitional dynamics of this model.
The solution relies heavily on Caliendo et al. (2019), with some modifications to allow for
the fact that in this model workers do not necessarily work in the same location as where
they reside, as well as for the fact that in this model there are two types of workers (high-
skilled workers and low-skilled workers). This numerical solution method relies on the
fact that we can express the equilibrium conditions in first differences, and by employing
this “dynamic hat algebra” we do not have to take a stance on the level of the fundamen-
tals of this economy. Additionally, this approach does not require us to assume that the
economy is in a steady state equilibrium at our initial period t = 0.
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5.11 Equations in First Difference

In this section I will express the equations that govern the transition dynamics of this
model (equations (7), (8), (11), and (17)) in first differences. For any time dependent vari-
able yt, denote ẏt+1 ≡ yt+1

yt
. I will also denote ugn,t ≡ exp(V g

n,t) to simplify the notation. We
can now express the transition dynamics in first difference as follows44:

u̇gn,t+1 =

exp

(
T̃gΦ

1
θg

Rgn,t+1r
α−1
Rn,t+1

)
exp

(
T̃gΦ

1
θg

Rgn,tr
α−1
Rgn,t

)

[

I∑
k=1

mg
kn,t

(
u̇gk,t+2

) β
νg

]νg
, (18)

ṁg
in,t+1 =

(
u̇gi,t+2

) β
νg∑I

k=1m
g
kn,t

(
u̇gk,t+2

) β
νg

, (19)

ṙRi,t+1 =

∑
g∈{h,l} L

g
Ri,t+1T̃gΦ

1
θg

Rgi,t+1∑
g∈{h,l} L

g
Ri,tT̃gΦ

1
θg

Rgi,t

. (20)

5.12 Solution Algorithm

I will now summarize the solution algorithm used to calculate the solution to this dynamic
discrete choice model.

1. Initiate the algorithm at t = 0 with a guess for a path of {{{u̇g0t+1}In=1}∞t=0}g∈{h,l}, such
that u̇gn,T+1 = 1 for all T large enough, and for all n. Take as given
{LgR0, L

g
F0,m

g
−1, {dij,t}

I,J,∞
i=1,j=1,t=1, {Aj}Jj=1, {H̄Ri}Ii=1, {rRi,0}Ii=1}.

2. For all t ≥ 0, use {{u̇g0t+1}In=1}∞t=0 to solve for {mg
t}∞t=1 using equation (19).

3. Use LgR0, {mt}∞t=1, and equation (11) to solve for {LgRt}∞t=0.

4. Use {LgRt} and LgF0 to estimate model consistent wages for period zero (t = 0),
{wgj,0}Jj=1 using the labor market clearing condition for each skill type45, (16).

44See Appendix C for the derivation of these equations.
45See Appendix C for an explanation on how to obtain the model-consistent wages as a function of resi-

dential and workplace population for each skill type.
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5. Use {LgRt}, {w
g
j,0}Jj=1, LgF0, and vector equation implied by (16) to solve forward46 for

the model consistent {LgF t}∞t=1 and {{wgj,t}Jj=1}∞t=0.

6. Use {LgRt}, {ΦRgt}, and equation (20) to solve for {ṙRn,t+1}. Then use {rRi,0}Ii=1 and
{ṙRn,t+1} to solve for {rRn,t}.

7. For each t, use {{wgj,t+1}, {m
g
t}, {dij,t}, {ṙRn,t+1}, and {u̇gi,t+2}} to calculate backwards

{u̇gn,t+1} using equation (18) for each skill type g. This will result in a new sequence
{u̇g1n,t+1}∞t=0.

8. Verify if {u̇g1n,t+1}∞t=0 ≈ {u̇
g0
n,t+1}∞t=0, if not, then start the again from step 1, with {u̇g1n,t+1}∞t=0

as your new guess. If indeed {u̇g1n,t+1}∞t=0 ≈ {u̇
g0
n,t+1}∞t=0, then {u̇g1n,t+1}∞t=0 is the solution.

5.13 Welfare Gains

The expected utility at time t in location n for a worker of skill type g can be written as47

V g
n,t =

∞∑
s=t

βs−t
[
T̃gΦ

1
θg

Rgn,sr
α−1
Rn,s − νg ln(mg

nn,s)

]
. (21)

If we define V̂ g
n,t as the expected utility under a counterfactual evolution of the model’s

fundamentals, then we can define the compensating variation in consumption (δgn,t) as the
constant increase in consumption that must be made each period under the counterfactual
so as to make an agent of skill type g living in location n at time t indifferent between the
counterfactual world and the realized equilibrium. In other words, δgn,t is such that

V g
n,t =

∞∑
s=t

βs−t
[
δgn,t + T̃gΦ̂

1
θg

Rgn,sr
α−1
Rn,s − νg ln(m̂g

nn,s)

]
.

Solving for δgn,t, this implies that

δgn,t = (1− β)
∞∑
s=t

βs−t
[
T̃g

(
Φ

1
θg

Rgn,sr
α−1
Rn,s − Φ̂

1
θg

Rgn,sr̂
α−1
Rn,s

)
− νg ln

(
mg
nn,s

m̂g
nn,s

)]
. (22)

46See Appendix C for a detailed explanation of this algorithm, as well as a proof of convergence and
uniqueness.

47See Appendix C for a derivation of this equation.
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By calculating a population-weighted average of the expected utility in each residential
location at time t, we obtain a measure of average welfare at time t,

Wt =
∑
g∈{h,l}

I∑
n=1

Lgn,0∑
g∈{h,l}

∑I
i=1 L

g
i,0

V g
n,t. (23)

Where we weight the expected utility in each residential location by the share of the pop-
ulation of that skill type living in that location at time t = 0. In the same way, we can
calculate the average welfare in the counterfactual world as

Ŵt =
∑
g∈{h,l}

I∑
n=1

Lgn,0∑
g∈{h,l}

∑I
i=1 L

g
i,0

V̂ g
n,t. (24)

With these measures, we can calculate the proportional gains in average welfare at time t
with respect to the counterfactual as simply

∆Wt =
Wt

Ŵt

− 1.

We can repeat this same exercise by skill type to obtain the average expected utility in each
residential location at time t for each skill level g as

W g
t =

I∑
n=1

Lgn,0∑I
i=1 L

g
i,0

V g
n,t, (25)

and the average welfare by skill type in the counterfactual as

Ŵ g
t =

I∑
n=1

Lgn,0∑I
i=1 L

g
i,0

V̂ g
n,t. (26)

Comparing these two measures by skill type we can obtain the proportional gains in av-
erage welfare at time t for each skill type with respect to the counterfactual as

∆W g
t =

W g
t

Ŵ g
t

− 1. (27)
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6 Parameter Estimation

There are 10 key parameters that must be known in order to solve this model, β, α, σ,
Th, Tl, κ, θh, θl, νh, and νl. I assume the bi-annual discount factor, β, to be 0.92 (implying
approximately a 4% real annual interest rate). I also assume the parameter that governs
the intra-period utility function, α, to be equal to 0.7, which results in a expenditure share
in housing of 0.3. I assume that the elasticity of substitution for the CES aggregator of
the consumption bundle, σ is equal to 6. This number is chosen based on the choice by
Tsivanidis (2019) for his Armington elasticity of substation, who, in turn, chooses that
number based on the median estimates from Feenstra et al. (2018). I fix Tl to be 1, and
calibrateTh such that the average wage premium in the city at t = 0 is equal to the observed
wage premium calculated from the National Household Survey for 2010 (See Appendix
C for details), which results in Th being equal to 1.14. I take κ = 0.01 from Ahlfeldt et al.
(2015).

In Subsection 6.1 I explain how I estimate the semi-elasticities of commute flows with re-
spect to commute costs for each skill type (θh, and θl) by relying on the 2010 commuting
survey for the city of Buenos Aires (ENMODO). Finally, in Subsection 6.2 I explain how I
estimate νh and νl, which are the multiplicative inverse of the intra-city migration elastic-
ities with respect to expected income for each skill type.

6.1 Estimating Commuting Semi-Elasticities

In order to calculate θh, and θl, I use data from the commuting survey for the city of Buenos
Aires from 2010 (ENMODO). This commuting survey divided the city into 21 zones, and
provides individual level data on commuting patterns for a sample of 22,500 households
in the metropolitan region of Buenos Aires. Following Ahlfeldt et al. (2015), I take logs of
equation 9, and add an error term that reflects the measurement error resulting from the
different methods employed to measure commute times in the model and in the survey.
This results in

πgij = −θg × κτ gij + γgi + ζgj + egij, (28)

where πgij = log(Πj|gi0) is the natural logarithm of the commuting probability between i

and j at time t = 0 for a skill type g, τ gij is the commute time from i and j for a skill type g,
γgi is a fixed effect at the origin level for a skill type g, ζgj is a fixed effect at the destination
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level for a skill type g, and egij is the error term. Aggregating this equation to the zone level
results in an approximate equation (ignoring the Jensen inequality term) of the form

πgIJ = −θg × κτ gIJ + γgI + ζgJ + egIJ . (29)

I will estimate this equation using the bilateral commuting flows from the commuting
survey in 2010. I estimate this equation using both a linear fixed effects estimator, as well as
with a Poisson Pseudo Maximum Likelihood estimator, to address the concerns regarding
the granularity of the commuting data (Dingel et al., 2020). Table 7 shows the results of
these estimations for each skill type. From columns 2 and 4 we can see that θh×κ = −0.029,
and θl×κ = −0.038. Using the fact that κ = 0.01, we find that θh = 2.9, and θl = 3.8. These
results are very similar to the ones estimated by Tsivanidis (2019), who finds a θh equal to
2.7 and a θl equal to 3.3 using commuting data from Bogota.

6.2 Estimating Intra-City Migration Elasticities

I will estimate the intra-city migration elasticities by skill type (1/νh and 1/νl) by adapting
the estimation method used in Caliendo et al. (2019), which is in itself an adapted version
of Artuç et al. (2010). I show that we can derive an estimating equation from this model
that relates current differences in migration flows to future differences in expected income,
as well as future differences in migration flows. I then estimate this equation using an IV-
GMM PPML estimator (Windmeijer and Santos Silva, 1997), using past migration flows
by skill type to instrument for future migration flows, and lagged differences in commuter
market access to instrument for the differences in commuter market access. The estimating
equation48 (which closely resembles the specification in Caliendo et al. (2019) but with
expected income instead of future wages) is

log
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mg
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+β log
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ii,t+1

)
+ωgt+1.

(30)
Following Caliendo et al. (2019) and Artuç et al. (2010), I estimate this equation under
the assumption that the average moving costs are equal for all location pairs (i, j), so that
µgij = µ ∀(i, j) ∈ N ×N , which allows me to define C̃g = −µ1−β

νg
, and obtain the following

48See Appendix C for the derivation of this equation.
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equation:
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(31)
Where C̃g is a constant and ωgt+1 is a random term that includes any unexpected shock at
time t+1 that affects the relative migration flows at time t+1. Estimating this equation for
each skill type using bi-annual intra-city migration flows constructed from the individual-
level data on residential locations obtained from the electoral register leads to an estimate
of νh equal to 1.4, and a νl equal to 1.8. This implies that high-skilled workers have a higher
intra-city migration elasticity than low-skilled workers (since the migration elasticity is the
multiplicative inverse these parameters).

7 Model Results

Having estimated the necessary elasticities and key parameters in the model, I use the
algorithm describe in Subsection 5.12 to solve numerically for the sequential competitive
equilibrium (as defined in Subsection 5.9) that converges to a stationary equilibrium in 25
periods, which is equal to 50 years, since I choose each period to be equal to two years, in
order to match the bi-annual individual-level migration data. I use data on employment
and residential population by district49 in 2011 to initialize the employment and popula-
tion vectors, I then use the migration matrix estimated from individual level data at the
district level between 2011 and 2013 to initialize the migration matrix in the model at t = 0.
Finally, I calculate minimum commute times using ArcMaps’s Network Analyst Tool for
each period by adding sequentially each line that appeared in each bi-annual period, with
these commute times I can calculate {dij,t} for every t = 0, 1, 2, 3, ...50 When estimating a
counterfactual scenario, I will use different commute times, calculated in the same way,
under different assumptions regarding the changes in the transport infrastructure. These
changes in the vector of time-varying fundamentals will lead to different sequential com-
petitive equilibria and stationary equilibria.

49In order to alleviate concerns regarding the sparsity of the migration matrix at the census tract level,
I solve the model at a more aggregate spatial level, the electoral district. The main results hold when the
model is solved at the census tract level (see Appendix D).

50I will assume that dij,t = dij,3 for all t ≥ 4.
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7.1 Effects of BRT on Spatial Sorting: Model vs Data

In this section I compare the estimated effects of the changes in market access due to the
construction of the BRT from the reduced form analysis (Section 4) to the estimated ef-
fects within the model. I first solve for the path of the endogenous variables in the model
under the assumption that the commute times (and therefore the commute costs) change
reflecting the construction of the BRT system. I then solve the model under the counterfac-
tual assumption that no BRT line was built, and, therefore, commute times did not change
over time.51 Having solved the model for both the scenario with the BRT, and the scenario
where no BRT was built, I employ a difference-in-difference estimation procedure within
the model, where I take the differential changes in market access in time, between t = 0

and t = 4,52 and between the model with the BRT and the model without the BRT (indexed
as CF), and regress these differential changes in market access on the differential changes
in the outcomes of interest. Within the model, I can observe the counterfactual trends
of all the endogenous variables for every location by solving the counterfactual model.
Therefore, by subtracting the changes that would have occurred even in the absence of
the transport infrastructure improvements, I can isolate the direct effects of the transport
infrastructure improvements in the model. The corresponding difference in difference es-
timating equation takes the following form:

(32)
∆ log(YBRT )−∆ log(YCF ) = α+ β1(∆ log(CMABRT )−∆ log(CMACF )) + β2HS sh.0

+ β3(∆ log(CMABRT )−∆ log(CMACF ))×HS sh.0 + ε.

Where ∆ log(Ym) is the change between t = 0 and t = 4 in the log of the outcome of interest
(high-skilled share, floorspace prices or population) for modelm, which can either beBRT
for the model that incorporates the BRT, or CF for the model that assumes no BRT lines
were built; in the same way, ∆ log(CMAm) is the change in log market access for each
model; HS sh.0 is the high-skilled share at t = 0 in each district; and ε is the error term.

51Note that, because the model does not assume that the economy starts at a stationary equilibrium, the
endogenous variables will not stay constant over time even in the absence of changes in commute times.

52Recall that each period in the model represents two years, so there are eight years between t = 0 and
t = 4.
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7.1.1 High-Skilled Share

From Table 8 we can see on the left the results from estimating equation 1 using the histori-
cal IV estimation method covered in Section 4 (column 4 of Table 4, and on the right we can
see the estimation results from estimating equation 32 with the differential change in the
high-skilled share as the dependent variable. We can see that the model produces similar
estimates than the reduced form analysis, both in sign and in magnitude. In both cases we
see that market access increased the high-skilled share more in places that had a higher
initial level of high-skilled share.53 The similarity of these results provide further evidence
that the construction of the Metrobus BRT system increased the spatial segregation by skill
type in the city.

7.2 Changes in Segregation by Skill Type

We have seen both through the lens of the model and through the reduced form analy-
sis that the changes in market access driven by the construction of the BRT system lead
to an increase in segregation by skill type in the short-run by increasing the high-skilled
share more in places that had originally higher high-skilled share. However, we could
also ask ourselves if this increase in segregation persists in the long-run (i.e. at the sta-
tionary equilibrium). To answer this question, I calculate the differential change in the
high-skilled share between t = 0 and the values achieved at the stationary equilibrium for
the model with the full BRT, and the model where not BRT line was put in place. I will
then regress those differential changes for each place on the initial high-skilled share at
t = 0, estimating the following equation:

∆ log(hs shareBRT )−∆ log(hs shareCF ) = α + βlog(hs share0) + ε. (33)

By estimating equation 33, I find that, relative to a scenario where no BRT line had been
built, the Metrobus BRT system did increase segregation by skill type in the long run. From
Table 9 we can see that, indeed, places that started with a higher value of high-skilled
share increased their high-skilled share by more. A 1% increase in the initial high-skilled

53It is worth noting that changes in the high-skilled share were not directly targeted in the estimation of
this model.
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share led to a 0.6% higher differential increase in the high-skilled share at the stationary
equilibrium.

8 Welfare Results

In this section I analyze the impact on resident’s welfare of the construction of the BRT
system in Buenos Aires. One of the key contributions of this dynamic framework is that
it allows me to quantify the average welfare gains for residents based on where they were
living before the BRT system was built (which I refer to as “incumbents”), as opposed to
doing comparative statics on the ex post equilibrium. In the following subsection I study
the welfare gains by skill type for incumbents, and how these gains differ for different
parts of the city. I then study the aggregate welfare gains by skill type in the entire city, as
well as the average gains for people living close to the BRT lines at t = 0 and at the ex post
stationary equilibrium.

8.1 Welfare Gains for Incumbents

Let V g
n,0 be the expected utility of a resident of skill type g living in location i at time t = 0

in the scenario where the full BRT system will be built, as calculated in equation 21. Let us
also calculate V̂ g

n,0 as the expected utility at time t = 0 under the assumption that no BRT
line will be built. Since residents are forward-looking (and have perfect foresight), these
expected utilities will include the expected future utility flows under each scenario, and
will, therefore, be different. By calculating V g

n,0/V̂
g
n,0 − 1 we can measure the welfare gains

in terms of expected utility for residents according to their place of residence before the
BRT was put in place.

When analyzing the spatial distribution of the average welfare gains for incumbents by
district (Figure 16), there are three findings that stand out. First, welfare gains were higher
for both high- and low-skilled incumbents living closer to the BRT lines and further from
the CBD , since these are the locations where commuter market access increased the most.
Second, welfare gains for high- and low-skilled incumbents are highly spatially correlated.
In fact, the Pearson correlation coefficient between high- and low-skilled gains by district
is 0.97. Third, welfare gains for both skill types seem larger for incumbents living near the
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southernmost BRT line than for incumbent living near the northernmost BRT line, with
incumbents living near the other BRT lines seeing an intermediate level of welfare gains
on average.

From Figure 3 we see that different BRT lines cross through neighborhoods with different
levels of high-skilled share at baseline. In particular, census tracts near (less than one kilo-
meter) from the first, second, and fifth lines built have an average high-skilled share that
is close the median,54 while census tracts near the third line built (the southernmost line)
have, on average, much lower levels of high-skilled share,55 and the census tracts near the
fourth line built (the northernmost line) have the highest high-skilled share on average
(Table 10).56 With this information, I group the lines intro three subsets: the southern line
(third line to be built) constitutes one group, and represents the line built along neigh-
borhoods with the lowest levels of high-skilled share in 2010; the first, second, and fifth
lines to be built constitute the second group, and represent the lines that were built along
neighborhoods with a medium level of high-skilled share; and the northern line (fourth
to be built) constitutes the third group, and represents the line built along neighborhoods
with the highest high-skilled share in the city.

By comparing the average welfare gains for incumbent residents living near57 each group
of lines (Figure 17), we can see that both high- and low-skilled incumbent residents that
were living in locations with lower initial high-skilled share saw the largest welfare gains.
In fact, high-skilled incumbent residents living near the southernmost line saw welfare
gains on average 2.1 times those of the incumbent residents living near the northernmost
line, while for low-skilled incumbent residents the gains were 1.8 times higher near the
southern line. Gains on average for residents living near the lines that served neighbor-
hoods with a median level of high-skilled share saw welfare gains that were in between
those of the southern and the northern line, on average.

54The median census tract had a high-skilled share of 0.5 according to the 2010 census.
55The average census tract that is at most at one kilometer from the southern line has a high-skilled share

of 0.31, placing it at the thirteenth percentile of the distribution of high-skilled share in the city in 2010.
56The average census tract near the northern line had a high-skilled share of 0.63 in 2010, placing it at the

seventy-third percentile of the distribution of high-skilled share in the city.
57At most at one kilometer from a BRT line.
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8.2 Aggregate Welfare Results

Estimating ∆W g
t from equation 27 at t = 0 for high- and low-skilled residents, I find

that the aggregate welfare gains at t = 0 from the construction of the BRT system were
0.6% for both high- and low-skilled residents.58 At the same time, estimating the same
measure at t = 25, where the sequential competitive equilibrium is assumed to converge to
a stationary equilibrium, I find that the average welfare gains at the stationary equilibrium
are 0.7% for both high- and low-skilled residents. Additionally, I find that the Metrobus
resulted in a net present value gain (net of construction costs) of $13.26 billion measured
in 2010.59 This is equivalent to a constant increase in the 2010 GDP of the city of 0.4%.

From Figure 16 we can clearly see that the welfare gains were not distributed equally
across the city, and in fact, in many parts of the city (further from the BRT), the gains were
significantly lower than in districts that were close to a BRT line. One additional way to see
this is to calculate the aggregate welfare gains for a subset of districts that are at most at a
certain distance from a BRT line. Table 11 shows the aggregate welfare gains for residents
(high- and low-skilled) living in districts at most at a certain distance from a line. We can
see from this table that for residents living at most at 800 meters (about half a mile) from
a BRT line at t = 0, welfare gains are much larger on average, with high-skilled residents
seeing an average gain of 1.04% and low-skilled residents seeing an average gain of 0.94%.
As we increase the maximum distance to a BRT line, the average welfare gains decrease,
as would be expected.

9 Counterfactuals: Local Transport Infrastructure Improve-
ments

In this section I study what would have happened to spatial sorting between high- and
low-skilled residents if only a subset of lines were built, as opposed to the full BRT system.
I construct three counterfactual scenarios: in the first scenario, only the southern line, that
goes through the districts with the lowest high-skilled share in 2010, is built; in the second

58Average welfare gains for both high- and low-skilled residents are the same up to the fourth digit. This
similarity is consistent with the findings of Tsivanidis (2019), where he finds that both high- and low-skilled
residents of Bogota benefited about the same on average from the construction of a BRT in the city.

59See Appendix D for details on this calculation.
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scenario, the three lines that go through districts that are close to the median value of the
high-skilled distribution in 2010 (the first, second, and fifth lines to be built) are the only
lines to be built; in the third scenario, only the northern line, that serves the districts with
the highest high-skilled share on average, is built. I study the consequences of building
these three different subsets of BRT lines on spatial sorting, and on welfare for incumbents
that live near each group of BRT lines.

9.1 Spatial Sorting in Each Counterfactual Scenario

Having solved the model for the sequential competitive equilibrium that converges to a
stationary equilibrium under each counterfactual scenario, I compare the changes in the
high-skilled share in each district between each of these counterfactuals and the counter-
factual scenario where no BRT line was built. I estimate a version of equation 33, where
the subscript BRT now refers to each counterfactual scenario where only a subset of the
BRT lines are built. The results of running these regressions for each counterfactual sce-
nario are shown in Table 12. We can see that, had the city built only the southernmost
line (column 2), the high-skilled share would have increased more in districts that had an
originally lower level of high-skilled share. This is consistent with the fact that the only
transport infrastructure improvement taking place in this scenario is in districts that are,
on average, at the lower end of the distribution of high-skilled share in baseline. This re-
sult indicates that gentrification60 would have occurred around the southern line, had that
been the only line that was built.

If we look at column 3 in Table 12, we can see that, if only the three lines that run through
districts with medium levels of high-skilled share in baseline were built, we would have
still seen a similar pattern of spatial sorting, with high-skilled share increasing more in
places that had a higher initial level of high-skilled share. Finally, from column 4 of the
same table, we see that the northern line, which serves the districts with the highest initial
high-skilled share, would have had no significant effect on spatial sorting as a whole in
the city, although this could be in part due to the smaller length of this line, which implies
that it affected a smaller area of the city.

60Defined narrowly in this case as the increase in the high-skilled share in places that had a low level of
high-skilled share initially.

39



9.2 Welfare Gains in Each Counterfactual Scenario

As would be expected given the more local nature of the transport infrastructure improve-
ments in these counterfactual scenarios, we can see in Figures 18, 20, 22 that the largest
welfare gains in each counterfactual scenario were for incumbents near the BRT lines that
were built in each case. This is consistent with the fact that welfare gains are higher for
residents living closer to the transport infrastructure improvements.

Interestingly, when we compare the gains for incumbents that were living near the south-
ern line (Figure 19) between the scenario where only that line was built, and the scenario
were all BRT lines were built, we can see that the welfare gains are 31% lower for high-
skilled residents and 30% lower for low-skilled residents. In comparison, the welfare gains
for incumbent residents living near the BRT lines that were built in the second scenario
only saw a decrease of 3% for high-skilled workers, and 5% for low-skilled workers (Fig-
ure 21). The decrease in welfare for incumbent residents living near the built BRT lines
in the third counterfactual scenario was in between decreases in the other two scenarios,
with a decrease of 20% for high-skilled residents and 19% for low-skilled residents.

Part of these decreases in welfare would come from the decrease in expected utility condi-
tional on moving in the future, since under the counterfactual scenarios, commuter market
access increase in fewer parts of the city. However, the fact that the highest decreases in
welfare arise from the scenario where only the southern line was built suggests that, at
least in part, the gentrification caused by only building that one line decreased the wel-
fare gains for incumbent residents, relative to a situation where other lines were the full
BRT system was built, and no gentrification occurred in these districts.

10 Conclusion

In this paper, I make three contributions to the understanding of the effects of improving
the urban transit infrastructure. First, I show that migration response to these improve-
ments by high- and low- skilled workers depend on the initial characteristics of the neigh-
borhoods that are being targeted by these improvements. For the same level of increase
in market access, neighborhoods with an initial proportion of high-skilled share at the
eightieth percentile of the distribution see increases in the high-skilled share that are, on
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average, six times those of neighborhoods at the twentieth percentile of the distribution.
This differential effect led to an increase in spatial segregation in the city.

Second, I develop a dynamic quantitative spatial equilibrium framework that allows us
to quantify the welfare effects of these transport projects on the residents that were living
near these improvements before they were put in place. This is particularly significant
because transport infrastructure projects are a form of place based policy, and as such,
policy makers chose the placement of these projects in order to target the residents that are
living in the neighborhoods that are closer to these transport improvements. Therefore,
being able to quantify the welfare gains of these incumbent residents is of direct policy
relevance. In the case of Buenos Aires, I find that the BRT system increased welfare more
for both high- and low-skilled residents in neighborhoods that had an initially low high-
skilled share. Comparing residents living near the southern line, which runs through the
neighborhoods with the highest proportion of low-skilled residents, to the residents living
near the northern line, which runs through neighborhoods with the highest proportion of
high-skilled residents, we find that the residents living near the southern line saw welfare
gains that are twice those of the residents living near the northern line.

Third, I study the counterfactual welfare effects for incumbent residents living near the
BRT lines of more localized transport infrastructure improvements. Due to budgetary
and political considerations, governments might decide to prioritize transport improve-
ments in poorer areas, where the share of low-skilled workers is higher. I show that, in the
case of Buenos Aires, building a single line that ran through the neighborhoods with the
highest proportion of low-skilled workers would have still benefited incumbent residents
living near the line, but the welfare gains would had been 31% lower for high-skilled res-
idents, and 31% lower for low-skilled residents. Furthermore, this more localized transit
improvement would have led to a gentrification of the targeted neighborhoods, as op-
posed to the more comprehensive plan that was put in place, which had the opposite
effect for neighborhoods in the lowest quintile of the high-skilled share distribution. This
finding suggests that the transit-induced gentrification hypothesis might hold for local-
ized transit improvements, but by building a whole network of transit improvements, the
city produced the opposite effect, increasing the spatial segregation by skill type in the
city.
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11 Tables

Mode of Transport Low-Skilled High-Skilled Total

Car / motorcycle 16.5% 22.9% 19.3%
Taxi 2.1% 3.7% 2.8%
Bus 37.1% 39.3% 38.1%
Subway 4.4% 14.5% 8.8%
Train 1.6% 3.2% 2.3%
Walking / bicycle 38.1% 16.3% 28.5%
Other 0.2% 0.0% 0.1%

Table 1: Percentage of trips made by mode of transport by skill type. Percentages calcu-
lated from the 2010 mobility survey for the metropolitan region of Buenos Aires (Encuesta
de Movilidad Domiciliaria, or EnMoDo), taking all trips with origin and destination within
the city of Buenos Aires, for people of age 18 or above. Any person with at least some
post-secondary education was categorized as high-skilled, and every person with with
no more than secondary education was categorized as low-skilled.
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Code Occupation Description
1 Managers
2 Professional
3 Technicians and associate professionals
4 Clerical support workers
5 Service and sales workers
6 Skilled agricultural, forestry and fishery workers
7 Craft and related trades workers
8 Plant and machine operators, and assemblers
9 Elementary occupations
0 Armed forces occupations

Table 2: International Standard Classification of Occupations (ISCO) one-digit occupation
groups.
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∆ log(hs share)

1 2 3 4 5
OLS IV OLS IV IV

∆ log(CMA) -0.122 0.202 -2.797 -2.308 -2.609
(0.087) (0.096)** (0.564)*** (0.522)*** (1.197)**

hs share0 0.192 0.296 0.153 0.113 0.191
(0.038)*** (0.044)*** (0.078)** (0.052)** (0.097)**

∆ log(CMA) × hs sh. avg.0 4.629 4.143 3.489
(0.895)*** (0.847)*** (1.925)*

cons -0.457 -0.538 -0.445 -0.419 -0.404
(0.026)*** (0.031)*** (0.053)*** (0.036)*** (0.063)***

Neigh. FE NO NO NO NO YES
F first - 1470 - 791 277
N 2,282 2,282 2,282 2,282 2,282

Table 4: Reduced Form Results: regressions of change in high skill share between 2011 and
2017 on change in market access between 2011 and 2017, initial average high skill share
for contiguous census tracts, and the interaction term. The instrument used for the IV
regressions is a measure of change of log CMAwhere the 2017 CMAis calculated assuming
the BRT lines were built following the 1938 tramway lines. Cragg-Donald Wald F statistics
from the first stage regression are reported for each IV estimation. Robust standard errors
in parentheses. * p<0.10, ** p<0.05, *** p<0.01.
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∆ log(floorspace price)

1 2 3 4 5
OLS IV OLS IV IV

∆ log(CMA) -0.310 0.314 -4.059 -3.550 -5.299
(0.134)** (0.084)*** (1.097)*** (1.012)*** (1.420)***

hs share0 0.080 0.281 -0.161 -0.001 -0.480
(0.051) (0.071)*** (0.065)** (0.055) (0.093)***

∆ log(CMA) × hs sh. avg.0 6.552 6.376 9.379
(1.735)*** (1.611)*** (2.235)***

cons 0.104 -0.051 0.250 0.131 0.361
(0.033)*** (0.047) (0.044)*** (0.038)*** (0.057)***

Neigh. FE NO NO NO NO YES
F first - 1470 - 791 277
N 2,282 2,282 2,282 2,282 2,282

Table 5: Reduced Form Results: regressions of change in floorspace prices between 2011
and 2017 on change in market access between 2011 and 2017, initial average high skill
share for contiguous census tracts, and the interaction term. The instrument used for the
IV regressions is a measure of change of log CMA where the 2017 CMA is calculated as-
suming the BRT lines were built following the 1938 tramway lines. Floorspace prices are
calculated as the average sale price per square meter, according to geo-referenced online
asking price data for the city of Buenos Aires. Cragg-Donald Wald F statistics from the first
stage regression are reported for each IV estimation. Robust standard errors in parenthe-
ses. * p<0.10, ** p<0.05, *** p<0.01.

50



IV regressions
∆log(HS pop.) ∆log(LS pop.) ∆log(Tot. pop.)

∆ log(CMA) -1.429 -0.679 -1.198
(0.553)*** (0.668) (0.505)**

hs share0 0.200 0.129 0.266
(0.056)*** (0.071)* (0.050)***

∆ log(CMA) × hs sh. avg.0 3.500 2.376 3.167
(0.934)*** (1.142)** (0.850)***

cons -0.471 -0.528 -0.547
(0.039)*** (0.047)*** (0.034)***

F first 791 791 791
N 2,282 2,282 2,282

Table 6: Reduced Form Results: regressions of change in high-skilled population (column
1), low-skilled population (column 2), and total population (column 3) between 2011 and
2017 on change in market access between 2011 and 2017, initial average high skill share
for contiguous census tracts, and the interaction term. The instrument used for the IV
regressions is a measure of change of log CMAwhere the 2017 CMAis calculated assuming
the BRT lines were built following the 1938 tramway lines. Cragg-Donald Wald F statistics
from the first stage regression are reported for each IV estimation. Robust standard errors
in parentheses. * p<0.10, ** p<0.05, *** p<0.01.

ln Bilateral Commuting Prob. 2010
High-skilled Low-skilled

trip time -0.037 -0.029 -0.047 -0.038
(0.014)*** (0.012)** (0.009)*** (0.009)***

Estimation OLS PPML OLS PPML
Fixed Effects Yes Yes Yes Yes
R2 0.48 - 0.28 -
N 415 415 424 424

Table 7: Estimation of bilateral commuting probabilities using equation 9. Robust stan-
dard errors in parentheses. * p<0.10, ** p<0.05, *** p<0.01.

51



Reduced Form (IV) Model

∆ log(hs share) ∆ log(hs shareBRT )−∆ log(hs shareCF )

∆ log(CMA) -2.308 ∆ log(CMABRT )−∆ log(CMACF ) -2.202
(0.522)*** (0.623)***

hs share0 0.113 hs share0 -0.026
(0.052)** (0.036)

∆ log(CMA) × hs sh. avg.0 4.143 ∆ log(CMABRT )−∆ log(CMACF )× hs share0 6.169
(0.847)*** (1.651)***

cons -0.419 cons -0.012
(0.036)*** (0.020)

R2 - R2 0.29
N 2,282 N 167

Table 8: Reduced form results versus model estimation. The left-hand side shows the
results from column 4 of table 4, while the right-hand side shows the results from the
difference in difference estimation within the model, comparing changes between t = 0,
and t = 0, and between the model with the BRT system, and the counterfactual without
a BRT system put in place. Robust standard errors in parentheses. * p<0.10, ** p<0.05, ***
p<0.01.
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∆ log(hs shareBRT )−∆ log(hs shareCF )

log(hs share0) 0.585
(0.139)***

cons 0.403
(0.088)***

R2 0.11
N 167

Table 9: Measuring increase in segregation at the stationary equilibrium. This table shows
the result from estimating a difference in difference regression within the model, where I
difference the changes between the initial high-skilled share and the high-skilled share at
the stationary equilibrium, between the model with the BRT, and the counterfactual model
without the BRT. Robust standard errors in parentheses. * p<0.10, ** p<0.05, *** p<0.01.

Order Built 1 2 3 4 5
Line Name J. B. Justo 9 de Julio Sur Cabildo San Martin
Median HS share 0.46 0.54 0.33 0.65 0.48
Mean HS share 0.48 0.55 0.31 0.63 0.48

Table 10: High-skilled share by BRT line. Each column shows the median and mean high-
skilled share for census tracts that are at most one kilometer from a BRT line. The high-
skilled share was calculated as the proportion of population in each census tract with at
least some post-secondary education, according to the 2010 national census data.
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(1) (2) (3) (4)
Distance

to Line (m)
Avg. Welfare

HS close to line
Avg. Welfare

HS far from line
Avg. Welfare

LS close to line
Avg. Welfare

LS far from line
400 1.04 0.59 0.94 0.59
800 1.03 0.55 1.02 0.55

1200 0.92 0.48 0.9 0.48
1600 0.87 0.37 0.85 0.37
2000 0.76 0.35 0.76 0.35
2400 0.67 0.36 0.68 0.36
2800 0.61 0.39 0.61 0.39
3200 0.59 0.7 0.59 0.63
3600 0.59 0.71 0.59 0.61

Table 11: Average welfare for high- and low-skilled incumbents by distance to a BRT line.
Columns 1 and 3 show the welfare gains for incumbents living at most at the distance
shown in the “Distance to line” column from a BRT line at time t = 0, while columns 2
and 4 show the average welfare gains for incumbent residents of places farther than that
distance at time t = 0.
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∆ log(hs shareBRT )−∆ log(hs shareCF )

(1) (2) (3) (4)
Full BRT Low HS share Medium HS share High HS share

log(hs share0) 0.585 -1.216 0.412 -0.261
(0.139)*** (0.734)* (0.068)*** (0.243)

cons 0.403 -0.807 0.284 -0.170
(0.088)*** (0.464)* (0.042)*** (0.154)

R2 0.11 0.12 0.15 0.04
N 167 167 167 167

Table 12: Spatial sorting for counterfactual scenarios. This table shows the result from
estimating a difference in difference regression within the model, where I difference the
changes between the initial high-skilled share and the high-skilled share at the stationary
equilibrium, between the model with only a subset of BRT lines, and a counterfactual
model with no BRT lines. Robust standard errors in parentheses. * p<0.10, ** p<0.05, ***
p<0.01.
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12 Figures
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Figure 1: Fraction of total employment population by commune.
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Figure 2: Share of total employment by skill type for each commune.
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Figure 3: Share of high-skilled residents living in each district in 2011.
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Figure 4: Percentiles of floorspace prices, calculated as the average sale price per square
meter, by district in 2011.
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Figure 5: Subway lines built up to 2010 in the city of Buenos Aires.
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Metrobus Lines
1 - Metrobus Juan B. Justo

2 - Metrobus 9 de Julio

3 - Metrobus Sur

4- Metrobus Norte

5 - Metrobus Av San Martin

Metrobus Lines
1 - Metrobus Juan B. Justo

2 - Metrobus 9 de Julio

3 - Metrobus Sur

4- Metrobus Norte

5 - Metrobus Av San Martin

Figure 6: Metrobus lines built between 2011 and 2017 in the city of Buenos Aires, numbered
by the order in which they were constructed.
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Figure 7: Binscatter of the 2010 census population by census tract compared to the number
of geocoded voters by census tract. The red line is a 45 degree line.
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Figure 8: High-skill share by occupations at 1 digit ISCO classification in 2011. Calculated
from the first-trimester wave of the National Household Survey (Encuesta Permanente de
Hogares) in 2011.
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Figure 9: High-skilled share in 2010 census versus electoral register data in 2011. Regres-
sion at the census tract level of high-skilled share observed in the 2010 census on the high-
skilled share measure constructed from the individual level data from the 2011 electoral
register. The slope of the regression line is 1.2, and is significant at a 1% level. The R-
squared of the regression is 0.6.
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Figure 10: Commuter Market Access of high-skilled workers in 2011.
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Figure 11: Commuter Market Access of low-skilled workers in 2011.
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Figure 12: Proportional change in Commuter Market Access for high-skilled workers be-
tween 2011 and 2017.
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Figure 13: Proportional change in Commuter Market Access for low-skilled workers be-
tween 2011 and 2017.
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Figure 14: Tramway lines running through two-way avenues in 1938, and Metrobus BRT
lines built up to 2017.

69



-.
5

0
.5

1

Initial_HS_Share

<20% 20%-40%
40%-60% 60%-80%
>80%

IV coefficients by baseline HS share

Figure 15: Coeff. of regressing ∆ log(hs share) on ∆ log(CMA) for census tracts in differ-
ent parts of the distribution of initial HS share of contiguous census tracts.
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Figure 16: Average welfare gains (in percentage terms) for high-skilled and low-skilled
incumbents at t = 0 by district.
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Figure 17: Average welfare gains for incumbent residents at t = 0 by line group and skill
type.

Figure 18: Average welfare gains for incumbent residents at t = 0 by line group and skill
type in the counterfactual scenario where only the southern line that goes through the
districts with the lowest high-skilled share is built.
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Figure 19: Comparison of welfare gains for each skill type between model with full BRT,
and model where only the southern line that goes through the districts with the lowest
high-skilled share is built.

Figure 20: Average welfare gains for incumbent residents at t = 0 by line group and skill
type in the counterfactual scenario where only the lines that go through the districts with
the medium level of high-skilled share are built.
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Figure 21: Comparison of welfare gains for each skill type between model with full BRT,
and model where only the lines that go through the districts with the medium level of
high-skilled share are built.

Figure 22: Average welfare gains for incumbent residents at t = 0 by line group and skill
type in the counterfactual scenario where only the line that goes through the districts with
the highest high-skilled share is built.
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Figure 23: Comparison of welfare gains for each skill type between model with full BRT,
and model where only the line that goes through the districts with the highest high-skilled
share is built.
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A Data Appendix

A.1 Electoral Register Data

The electoral register (padrón electoral) for the city of Buenos Aires contains information on
each citizen eligible for voting61 that resides in the city of Buenos Aires, which amounts to
approximately 2.5 million individuals.62 This register contains the full name, sex of birth,
year of birth, national ID number, residential address, and a description of occupation.63

I use the full name, national ID number, and sex of birth to uniquely identify each citizen
across registers.64 This allows me to merge the 2011, 2013, 2015, and 2017 registers into a
panel data set that contains addresses for each individual for every year that they appear
in the data set.

A.1.1 Geocoding Observations

I assign geographical coordinates (latitude and longitude) to every street address that can
be identified within the electoral register for each year using a combination of two geocod-
ing services, the government of the city of Buenos Aires geocoding API65, and the HERE
geocoding API.66 After extensive string cleaning and normalization, I was able to geocode
139,263 distinct addresses.67 I discard government addresses and police stations, which
are often used to provide an address for people who do not have a fixed residential ad-
dress.68 Finally, close to 5% of the individuals in the data set had residential addresses
that could not be geocoded. Most of these individuals live in informal settlements, and
therefore do not have standardized addresses that could be interpreted by the geocoding

61Every Argentine citizen over 18 years of age was eligible for voting in 2011. Starting in the 2013 elections,
eligibility was extended to all citizens over 16 years of age. Since I restrict myself to a balanced panel of
individuals that can be tracked between 2011 and 2017, I don’t include individuals that are less than 18
years of age in 2013.

62The total number of voters registered in the city changes by less than 1% between 2011 and 2017.
63This description of occupation was only available in the 2011 register, so I don’t have any time-series

variation on occupation by individual.
64The national ID number and sex of birth are enough to uniquely identify 98% of the observations, for

the remaining observations I use the full name to supplement the merging procedure.
65Available here: https://usig.buenosaires.gob.ar/apis/
66Available here: https://developer.here.com/products/geocoding-and-search
67These addresses do not contain the exact apartment number for multi-family residential buildings.
68Keeping these addresses does not change the main results of the paper, but increases the population

substantially in certain census tracts in 2011 relative to the population observed in the 2010 census.
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services. In the end, I obtain geocoded addresses that give me the street level location
of the residential address for 2,382,326 individuals in 2011, 2,438,693 individuals in 2013,
2,446,541 individuals in 2015, and 2,461,564 individuals in 2017.

A.1.2 Classifying Occupations

The electoral register for the year 2011 includes a variables that describes the occupation
of each person in the register. These descriptions were grouped into 4522 distinct occu-
pations, which were then classified manually into one of the ten one-digit groups from
the International Standard Classification of Occupations (ISCO). In order to guarantee the
quality of the classification, I only classified occupations when it was clear the they be-
longed to a group, and when the original description was informative. Slightly more than
half of the sample (1,305,217) had an occupation value of “student” (estudiante in Spanish).
I decided to drop these individuals from my main analysis, since it wasn’t clear what occu-
pation or education level they might have. For another 399,185 individuals, no occupation
was listed. In total, I was able to reliably identify an occupation for 607,775 individuals. I
will track these individuals through time in order to construct the migration probabilities
that will be used in the estimation of the model.

A.2 Construction of Employment Measure by District

The city’s Annual Household Survey (Encuesta Anual de Hogares) allows me to calculate a
measure of employment by skill type by commune. However, there are only 15 communes
within the city, and, in order to capture changes in market access, it is convenient to have a
smaller measure of employment at a smaller spatial unit.69 In order to obtain a measure of
employment at the district level,70 I combine the measure of employment at the commune
level with the land use map from 2010-2011 by skill type (Lgc). I use the land use map to
count the number of plots in each commune that are used for commercial or productive
uses (lgc ), I then count the number of plots in each district, within a commune, that are
used for commercial or productive uses (lgv,c). With these three measures, I estimate the

69Alternatively, one could calculate average commute times for different points within a larger spatial
unit, and use this average commute time as the commute time from any residential location to an employ-
ment location defined at the commune level. Both the reduced form and the quantitative results remain
qualitatively similar when employing this alternative method.

70There are 167 districts, or an average of 11.13 districts per commune.
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employment by skill type as
Lv,C = LC ×

lv,C
lC
.

The underlying assumption is that workers of a given skill type within a commune are
distributed between districts in proportion to the fraction of the total land used for com-
mercial and productive uses in the commune that is in that district.

A.3 Commute Times

In order to calculate the commute times used in the model τij , I create a model of the city’s
transport network using ArcMap’s Network Analyst Tool and GIS data on the street grid,
the subway lines, the bus lines, the BRT lines, and the above-ground trains. I assign an av-
erage speed for subways, trains, buses, and walking within the network based on the av-
erage speeds calculated by mode of transport in the 2010 commuting survey (ENMODO).
With this transport network put in place, I estimate commute times as the times for the
minimum-time routes between the centroids of each residential location (defined either
as a census tract or a district) to the centroid of each employment location (district), where
the minimum-time route is calculated using the shortest path Dijkstra algorithm. I first
calculate these commute times in a model of the city’s transport network that does not
include the BRT lines, and then, I add each lines sequentially according the the time they
were inaugurated. Once a line or a set of lines have been added, I assume that buses that
run through those lines increase their speed according the the increases in speed measures
by the City Government, and re-calculate the minimum commute times.
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B Supplementary Reduced Form Results

B.1 Reduced Form Results Using Low-Skilled CMA

∆ log(hs share)

1 2 3 4 5
OLS IV OLS IV IV

∆ log(CMAl) -0.024 0.424 -2.634 -1.088 -2.450
(0.076) (0.088)*** (0.646)*** (0.708) (1.369)*

hs share0 0.224 0.362 0.170 0.237 0.157
(0.037)*** (0.047)*** (0.085)** (0.071)*** (0.114)

∆ log(CMA) × hs sh. avg.0 4.362 2.379 3.660
(0.992)*** (1.117)** (2.111)*

constant -0.481 -0.591 -0.457 -0.508 -0.400
(0.025)*** (0.033)*** (0.058)*** (0.048)*** (0.078)***

Neigh. FE NO NO NO NO YES
N 2,282 2,282 2,282 2,282 2,282

* p < 0.1; ** p < 0.05; *** p < 0.01

Table B.1: Reduced Form Results: regressions of change in high skill share between 2011
and 2017 on change in market access for low-skilled workers between 2011 and 2017, ini-
tial average high skill share for contiguous census tracts, and the interaction term. The
instrument used for the IV regressions is a measure of change of log CMAl where the
2017 CMAl is calculated assuming the BRT lines were built following the 1938 tramway
lines. Cragg-Donald Wald F statistics from the first stage regression are reported for each
IV estimation. Robust standard errors in parentheses. * p<0.10, ** p<0.05, *** p<0.01.
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∆ log(floorspace price)
1 2 3 4 5

OLS IV OLS IV IV
∆ log(CMAl) -0.178 0.470 -4.609 -1.871 -5.907

(0.107)* (0.078)*** (1.150)*** (1.246) (1.659)***
hs share0 0.125 0.325 -0.202 0.132 -0.528

(0.057)** (0.079)*** (0.070)*** (0.086) (0.119)***
∆ log(CMA) × hs sh. avg.0 7.375 3.684 10.021

(1.781)*** (1.932)* (2.495)***
constant 0.071 -0.088 0.277 0.041 0.392

(0.037)* (0.053)* (0.048)*** (0.059) (0.078)***
Neigh. FE NO NO NO NO YES
N 2,282 2,282 2,282 2,282 2,282

* p < 0.1; ** p < 0.05; *** p < 0.01

Table B.2: Reduced Form Results: regressions of change in floorspace prices between 2011
and 2017 on change in market access for low-skilled workers between 2011 and 2017, ini-
tial average high skill share for contiguous census tracts, and the interaction term. The
instrument used for the IV regressions is a measure of change of log CMAl where the
2017 CMAl is calculated assuming the BRT lines were built following the 1938 tramway
lines. Floorspace prices are calculated as the average sale price per square meter, accord-
ing to geo-referenced online asking price data for the city of Buenos Aires. Cragg-Donald
Wald F statistics from the first stage regression are reported for each IV estimation. Robust
standard errors in parentheses. * p<0.10, ** p<0.05, *** p<0.01.
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C Theory Appendix

C.1 Derivation of Value Function

In this section I show how to go from equation (6) to equation (7). Consider

V g
n,t = E0

[
max
{i}

{
wgj,tεj,t

dij,t

}]
+ E0

[
max
{j}

{
βV g

i,t+1 − µ
g
ni + ηgi,t

}]
.

I will first show that
E0

[
max
{i}

{
wgj,tεj,t

dij,t

}]
= T̃Φ

1
θ
Rn,t.

Let yj =
wjεj
dnj

, where I drop the time subscript for clarity. We will assume εj is distributed
extreme value type II, so that F (εj) = exp((−Tε)−θ). Then, the CDF of yj is

Gj(y) = P (yj ≤ y)

= P (
wjεj
dnj
≤ y)

= P

(
εj ≤ y

dnj
wj

)
= e

−
(
Ty

dnj
wj

)−θ
.

81



Let ỹ = maxj{yj}, then we can define the CDF of ỹ as

G(y) = P (ỹ ≤ y)

=
J∏
j=1

P (yj ≤ y)

=
J∏
j=1

exp

( −y
T−1 wj

dnj

)−θ
= exp

− J∑
j=1

(
y

T−1 wj
dnj

)−θ
= exp

[
−y−θT−θ

J∑
j=1

(
wj
dnj

)θ]

= exp

−
 y

T−1

[∑J
j=1

(
wj
dnj

)θ] 1
θ


−θ .

Which implies that ỹ is distributed Frechet with a shape parameter θ and a scale parameter

T−1

[∑J
j=1

(
wj
dnj

)θ] 1
θ

. This implies that the expected value of ỹ is

E

(
J

max
j=1

{
wjεj
dnj

})
= E(ỹ) = T−1Γ

(
1− 1

θ

)[ J∑
j=1

(
wj
dnj

)θ] 1
θ

= T̃Φ
1
θ
Rn.

Where T̃ = T−1Γ
(
1− 1

θ

)
, and ΦRn =

∑J
j=1

(
wj
dnj

)θ
.

For the second term in (6), recall that ηgi,t is distributed extreme value type I with parame-
ters (−γνg, νg), where γ is the Euler-Mascheroni constant. Let us define

Ogn,t = E0

[
max
{j}

{
βV g

i,t+1 − µ
g
ni + ηgi,t

}]
.
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We can rewrite this expression as

Ogn,t = E{
I∑
i=1

βV g
i,t+1 − µ

g
ni + ηgi,t} × Pr[(βV g

i,t+1 − µ
g
ni + ηgi,t) ≥ βV g

m,t+1 − µgnm + ηgm,t ∀m = 1, ..., N ]

=
I∑
i=1

∫
(βV g

i,t+1 − µ
g
ni + ηgi,t)f(ηgi,t)×

∏
m6=i

F
(
β(V g

i,t+1 − V
g
m,t+1)− (µgni − µgnm) + ηgi,t

)
dηgi,t

=
I∑
i=1

∫
(βV g

i,t+1 − µ
g
ni + ηgi,t)

1

νg
exp

(
ηgi,t
νg
− γ
)
×

× exp

(
−

I∑
i=1

exp

(
−
β(V g

i,t+1 − V
g
m,t+1)− (µgni − µgnm) + ηgi,t

νg
− γ
))

dηgi,t.

Where the last step used the fact that the pdf of ηgi,t is

f(x) =
1

νg
exp

(
− x
νg
− γ − exp

(
− x
νg
− γ
))

and the CDF of ηgi,t is

F (x) = exp

(
− exp

(
− x
νg
− γ
))

.

Let us define bgi,t =
ηgi,t
νg

+ γ, agim,t =
β(V gi,t+1−V

g
m,t+1)−(µgni−µ

g
nm)+ηgi,t

νg
, ãgi,t = ln

∑I
m=1 exp(agim,t),

and b̃gi,t = bgi,t − ã
g
i,t. First consider the change of variables using bgi,t:

Ogn,t =
I∑
i=1

∫
(βV g

i,t+1 − µ
g
ni + νg(b

g
it − γ)) exp

(
−bgi,t −

I∑
i=1

exp
(
agim,t − b

g
i,t

))
dbgi,t

=
I∑
i=1

∫
(βV g

i,t+1 − µ
g
ni + νg(b

g
it − γ)) exp

(
−bgi,t − exp

(
−(bgi,t − ã

g
i,t)
))
dbgi,t.

Doing a second change of variables using b̃gi,t we obtain:

Ogn,t =
I∑
i=1

exp(ãgi,t)(βV
g
i,t+1 − µ

g
ni + νg(ã

g
it − γ)) + νg

∫
b̃gi,t exp

(
−b̃gi,t − exp

(
−b̃gi,t

))
db̃gi,t.
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Using the fact that γ =
∫
x exp(−x− exp(−x)), we obtain

Ogn,t =
I∑
i=1

exp(ãgi,t)(βV
g
i,t+1 − µ

g
ni + νgã

g
it).

Substituting in for ãgi,t, we find that

Ogn,t = νg ln
I∑
i=1

(
exp(βV g

i,t+1 − µ
g
ni)
) 1
νg .

Combining the first and second term, we arrive at equation (7).

C.2 Deriving Neighborhood Migration Flows

Letmg
in,t be the fraction of residents of type g that are residing in location n at the beginning

of period t, and move to location i by the end of period t. Since there is a continuum of
agents in each residential location at any time t, we can apply the strong law of large
numbers and express this fraction as the probability that any worker living in location n
chooses to move to location i at the end of time t, or

mg
in,t = P

[
(βV g

i,t+1 − µin + ηgi,t) ≥ (βV g
m,t+1 − µgmn + ηgm,t)∀m = 1, ..., N

]
=

∫ ∞
−∞

f(ηgi,t)
∏
m 6=i

F (β(V g
i,t+1 − V

g
m,t+1)− (µgin − µgmn) + ηgi,t) dη

g
i,t.

Let zgim,t = β(V g
i,t+1 − V

g
m,t+1)− (µgin − µgmn), then

mg
in,t =

∫ ∞
−∞

f(ηgi,t)
∏
m6=i

F (zgim,t + ηgi,t) dη
g
i,t

=

∫
1

ν

(−ηgi,t
νg
− γ − exp

(−ηgi,t
νg
− γ
))∏

m6=i

exp

(
− exp

(−zgim,t
νg

−
ηgi,t
νg
− γ
))

dηgi,t

=

∫
1

νg
exp

(−ηgi,t
νg
− γ
)∏
m 6=i

exp

(
− exp

(−zgim,t
νg

−
ηgi,t
νg
− γ
))

dηgi,t

=

∫
1

νg
exp

(−ηgi,t
νg
− γ
)

exp

(
−

N∑
m=1

exp

(−zgim,t
νg

−
ηgi,t
νg
− γ
))

dηgi,t.
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Define λgt = log
(∑N

m=1 exp
(
−zgim,t
νg

))
, xgt =

ηgi,t
νg

+ γ, ygt = xgt − λ
g
t . Note that

dxgt
dηgi,t

=
1

νg
⇒ dηgi,t = νgdx

g
t ,

and dygt
dηgi,t

=
dxgt
dηgi,t

⇒ dygt = dxgt .

Therefore, we can rewrite mg
in,t as

mg
in,t =

∫ ∞
−∞

1

νg
exp(−xgt ) exp(− exp(λgt ) exp(−xgt ))νgdx

g
t

=

∫
exp(−ygt − λ

g
t ) exp(− exp(λgt ) exp(−ygt − λ

g
t ))dy

g
t

= exp(λgt )

∫
exp(−ygt − exp(ygt ))dy

g
t

= exp(−λgt ) [exp(− exp(ygt ))] |∞−∞
= exp(−λgt )

=
1∑n

m=1 exp
(
−zgin,t
νg

)
=

1∑n
m=1 exp

[
1
νg

(−β(V g
i,t+1 − V

g
m,t+1) + (µgin − µ

g
mn)
]

=

[
exp(βV g

i,t+1 − µ
g
in)
] 1
νg∑n

m=1

[
exp

(
(βV g

m,t+1)− µgmn)
)] 1

νg

.

C.3 Deriving Labor Demand

From the first order conditions of the producers problem, we know that

whj,tL̃
h
Fj,t = (1− ρj)Xjt,

wlj,tL̃
l
F j,t = ρjXjt.

Where Xjt is the total expenditure on variety j at time t. From the CES demand for
varieties of the consumption good, we know that in equilibrium Xjt = p1−σ

jt X , where
X =

∑I
i=1 α

∑
g∈{h,l} ȳigt is the total expenditure on consumption in the economy, and
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ȳigt is the mean income of a worker of type g in location i at time t. Perfect competi-
tion will imply that the price of each variety is equal to its marginal cost at each time t,
pjt = A−1

j (wljt)
ρj(whjt)

(1−ρj). Combining these results and re-arranging terms we get

L̃lF j,t =
ρj
wlj

(
(wlj)

ρj(whj )(1− ρj)
Aj

)(1−σ)∑
i

∑
g

αT̃g

(∑
s

(
wgs
dis

)θg) 1
θg

LgRi,t, (34)

L̃hFj,t =
1− ρj
whj

(
(wlj)

ρj(whj )(1− ρj)
Aj

)(1−σ)∑
i

∑
g

αT̃g

(∑
s

(
wgs
dis

)θg) 1
θg

LgRi,t. (35)

Let wt = {{whjt}Jj=1, {wljt}Jj=1}, note that the right-hand side of equations 34 and 35 depends
on wt, the residential population vector for high- and low-skilled workers at time t (which
is assumed to be known to the producer at time t), and known parameters. Therefore, we
can define

fjlt(wt) =
ρj
wlj

(
(wlj)

ρj(whj )(1− ρj)
Aj

)(1−σ)∑
i

∑
g

αT̃g

(∑
s

(
wgs
dis

)θg) 1
θg

LgRi,t, (36)

fjht(wt) =
1− ρj
whj

(
(wlj)

ρj(whj )(1− ρj)
Aj

)(1−σ)∑
i

∑
g

αT̃g

(∑
s

(
wgs
dis

)θg) 1
θg

LgRi,t. (37)

C.4 Deriving Average Match Productivity

Consider

ε̄gjt = E[ε|g, t, choose j]

=
I∑
i=1

E[ε|g, t, choose j if living in i]Pr(i|j, g, t)

=
I∑
i=1

TgΠ
− 1
θg

j|git
1

dij,t
Pr(i|j, g, t).
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Where the last equality comes from the properties of ε being a random variable distributed
Fréchet, conditional on wgj,tεj,t

dij,t
being the maximal element of

{
wgs,tεs,t

dsj,t

}I
s=1

. Solving for
Pr(i|j, g, t), we get

Pr(i|j, g, t) = Πi|gjt

=
Πj|gitΠgit∑I
r=1 Πj|grtΠgrt

=
Πj|gitL

g
Ri,t∑I

r=1 Πj|grtL
g
Rr,t

.

Which implies that

ε̄gjt = Tg

I∑
i

π
− 1
θg

j|tig
1

dij,t

πj|tigL
g
Ri,t∑I

n πj|tngL
g
Rn,t

. (38)

C.5 Derivation of Equations in First Difference

C.5.1 Deriving Equation 18

Let us first define u̇gn,t+1 = exp(V g
n,t+1 − V

g
n,t). Then, from equation 7 we get

(
u̇gn,t+1

) 1
νg =

exp

(
T̃gΦ

1
θg

Rgn,t+1r
α−1
Rn,t+1

)
exp

(
T̃gΦ

1
θg

Rgn,tr
α−1
Rgn,t

)


1
νg ∑I

i=1

(
exp(βV g

i,t+2 − µ
g
in)
) 1
νg∑I

i=1

(
exp(βV g

i,t+1 − µ
g
in)
) 1
νg

 .
Multiplying and dividing each term in the sum

∑I
i=1

(
exp(βV g

i,t+2 − µ
g
in)
) 1
νg by

(
exp(βV g

i,t+1 − µ
g
in)
) 1
νg

we obtain

(
u̇gn,t+1

) 1
νg =

exp

(
T̃gΦ

1
θg

Rgn,t+1r
α−1
Rn,t+1

)
exp

(
T̃gΦ

1
θg

Rgn,tr
α−1
Rgn,t

)


1
νg


∑I

k=1

(
exp(βV g

k,t+2 − µ
g
kn)
) 1
νg

(exp(βV gk,t+1−µ
g
kn))

1
νg

(exp(βV gk,t+1−µ
g
kn))

1
νg∑I

i=1

(
exp(βV g

i,t+1 − µ
g
in)
) 1
νg

 .
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Reordering terms, and using the fact that

mg
kn,t =

[
exp(ββV g

k,t+1 − µ
g
kn)
] 1
νg∑n

m=1

[
exp

(
(ββV g

m,t+1)− µgmn)
)] 1

νg

,

we obtain

(
u̇gn,t+1

) 1
νg =

exp

(
T̃gΦ

1
θg

Rgn,t+1r
α−1
Rn,t+1

)
exp

(
T̃gΦ

1
θg

Rgn,tr
α−1
Rgn,t

)


1
νg  I∑

k=1

mg
kn,t

(
exp(βV g

k,t+2 − µ
g
kn)
) 1
νg(

exp(βV g
k,t+1 − µ

g
kn)
) 1
νg



=

exp

(
T̃gΦ

1
θg

Rgn,t+1r
α−1
Rn,t+1

)
exp

(
T̃gΦ

1
θg

Rgn,tr
α−1
Rgn,t

)


1
νg [

I∑
k=1

mg
kn,t

(
exp(β(V g

k,t+2 − V
g
k,t+1))

) 1
νg

]

=

exp

(
T̃gΦ

1
θg

Rgn,t+1r
α−1
Rn,t+1

)
exp

(
T̃gΦ

1
θg

Rgn,tr
α−1
Rgn,t

)


1
νg [

I∑
k=1

mg
kn,t

(
u̇gk,t+2

) β
νg

]
.

Which implies that

u̇gn,t+1 =

exp

(
T̃gΦ

1
θg

Rgn,t+1r
α−1
Rn,t+1

)
exp

(
T̃gΦ

1
θg

Rgn,tr
α−1
Rgn,t

)

[

I∑
k=1

mg
kn,t

(
u̇gk,t+2

) β
νg

]νg
. (39)
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C.5.2 Deriving Equation 19

Let us define ṁg
in,t+1 =

mgin,t+1

mgin,t
. Then, from equation 8

ṁg
in,t+1 =

[exp(βV gi,t+2−µ
g
in)]

1
νg∑N

m=1[exp(βV gm,t+2−µ
g
mn)]

1
νg

[exp(βV gi,t+1−µ
g
in)]

1
νg∑N

m=1[exp(βV gm,t+1−µ
g
mn)]

1
νg

=

(
exp(β(V g

i,t+2 − V
g
i,t+1))

) 1
νg∑I

k=1m
g
kn,t

(
exp(β(V g

k,t+2 − V
g
k,t+1))

) 1
νg

=

(
u̇gi,t+2

) β
νg∑I

k=1m
g
kn,t

(
u̇gk,t+2

) β
νg

.

C.5.3 Deriving Equation 20

Let us define ṙRi,t+1 =
rRi,t+1

rRi,t
. From equation 17 we obtain

ṙRi,t+1 =

∑
g∈{h,l} L

g
Ri,t+1T̃gΦ

1
θg
Rgi,t+1(1−α)

H̄Ri∑
g∈{h,l} L

g
Ri,tT̃gΦ

1
θg
Rgi,t(1−α)

H̄Ri

=

∑
g∈{h,l} L

g
Ri,t+1T̃gΦ

1
θg

Rgi,t+1∑
g∈{h,l} L

g
Ri,tT̃gΦ

1
θg

Rgi,t

.

C.6 Numerical Solution Algorithm

In this section I provide a more detailed explanation of the numerical solution algorithm
implemented in the main quantitative model of this paper.

1. Initiate the algorithm at t = 0 with a guess for a path of {{{u̇g0t+1}In=1}∞t=0}g∈{h,l}, such
that u̇gn,T+1 = 1 for all T large enough, and for all n. Take as given
{LgR0, L

g
F0,m

g
−1, {dij,t}

I,J,∞
i=1,j=1,t=1, {Aj}Jj=1, {ρj}Jj=1, {H̄Ri}Ii=1, {rRi,0}Ii=1}.
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2. For all t ≥ 0, use {{u̇g0t+1}In=1}∞t=0 to solve for {mg
t}∞t=1 using equation (19).

3. Use LgR0, {mt}∞t=1, and equation (11) to solve for {LgRt}∞t=0.

4. Use {LgRt} and LgF0 to estimate model consistent wages for period zero (t = 0),
{wgj,0}Jj=1 using the labor market clearing condition for each skill type, (16).

This step follows closely the way equilibrium wages are obtained in Ahlfeldt et al.
(2015) using employment population and residential population vectors for t = 0.
The key here is that these vectors are observed in the data, and so we can find the
wages at t = 0 that are consistent with the distribution of employment and residen-
tial population observed in the data, conditional on the estimated parameters.

5. Use {LgRt}, {w
g
j,0}Jj=1, LgF0, and vector equation implied by (16) to solve forward for

the model consistent {LgF t}∞t=1 and {{wgj,t}Jj=1}∞t=0.

In this section I implement a numerical algorithm to find model-consistent wages
for high- and low-skilled workers by inverting the labor demand functions from
equations 36 and 37. See Subsection C.6.1 for details on this algorithm.

6. Use {LgRt}, {ΦRgt}, and equation (20) to solve for {ṙRn,t+1}. Then use {rRi,0}Ii=1 and
{ṙRn,t+1} to solve for {rRn,t}.

7. For each t, use {{wgj,t+1}, {m
g
t}, {dij,t}, {ṙRn,t+1}, and {u̇gi,t+2}} to calculate backwards

{u̇gn,t+1} using equation (18) for each skill type g. This will result in a new sequence
{u̇g1n,t+1}∞t=0.

8. Verify if {u̇g1n,t+1}∞t=0 ≈ {u̇
g0
n,t+1}∞t=0, if not, then start the again from step 1, with {u̇g1n,t+1}∞t=0

as your new guess. If indeed {u̇g1n,t+1}∞t=0 ≈ {u̇
g0
n,t+1}∞t=0, then {u̇g1n,t+1}∞t=0 is the solution.

C.6.1 Algorithm for Model-Consistent Wages

In order to calculate model-consistent wages at time t > 0 using the residential population
vector at time t, {LgRi,t} for residents of both skill types, I use equations 36 and 37, as well as
the labor market clearing condition (equation 16) to express wages for both skill types as a
function of the full vector of wages, the full vector of residential population, and estimated
parameters.

Take 16 for each skill type g, and replace L̃gFj,t with fjgt(wt) from equations 36 and 37.
Rearranging terms we get
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(
wlj,t
)θl+1+(σ−1)ρj

=
ρj
ε̄lj,t

(
(whj,t)

(1− ρj)
Aj

)(1−σ)∑
i

∑
g

αT̃g

(∑
s

(
wgs,t
dis,t

)θg) 1
θg

∑
i

LlRi,t
(dij,t)

θl

ΦRil,t

−1

,

and

(
whj,t
)θh+1+(σ−1)(1−ρj)

=
(1− ρj)
ε̄hj,t

(
(wlj,t)

ρ
j

Aj

)(1−σ)∑
i

∑
g

αT̃g

(∑
s

(
wgs,t
dis,t

)θg) 1
θg

∑
i

LhRi,t
(dij,t)

θh

ΦRih,t

−1

.

Which imply that

wlj,t =

 ρj
ε̄lj,t

(
(whj,t)

(1− ρj)
Aj

)(1−σ)∑
i

∑
g

αT̃g

(∑
s

(
wgs,t
dis,t

)θg) 1
θg

∑
i

LlRi,t
(dij,t)

θl

ΦRil,t

−1


1
θl+1+(σ−1)ρj

,

(40)
and

whj,t =

(1− ρj)
ε̄hj,t

(
(wlj,t)

ρ
j

Aj

)(1−σ)∑
i

∑
g

αT̃g

(∑
s

(
wgs,t
dis,t

)θg) 1
θg

∑
i

LhRi,t
(dij,t)

θh

ΦRih,t

−1


1
θh+1+(σ−1)(1−ρj)

.

(41)
Stacking all the wages for high- and low-skilled into one vector of length 2 × J , wt =

{{whjt}Jj=1, {wljt}Jj=1}, we get
wt = g(wt). (42)

Where g : R2J → R2J is a vector function such that

gg,t =



 (1−ρj)
ε̄hj,t

(
(wlj,t)

ρ
j

Aj

)(1−σ)∑
i

∑
g αT̃g

(∑
s

(
wgs,t
dis,t

)θg) 1
θg

∑
i

LhRi,t

(dij,t)
θh

ΦRih,t

−1


1
θh+1+(σ−1)(1−ρj)

if g = h

 ρj
ε̄lj,t

(
(whj,t)

(1−ρj)
Aj

)(1−σ)∑
i

∑
g αT̃g

(∑
s

(
wgs,t
dis,t

)θg) 1
θg

∑
i

LlRi,t

(dij,t)
θl

ΦRil,t

−1


1
θl+1+(σ−1)ρj

if g = l.

In this way we have defined the full vector of wages as a fixed point that solves the vector
equation wt = g(wt). In order to obtain a unique (to-scale) wt, we can start with any
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initial vector, and apply iteratively g(wt) until the difference between one iteration and
the previous is small enough, where I define the difference in terms of the L2 distance
between vectors. This algorithm will result in a unique (to-scale) vector that solved the
vector equation wt = g(wt). This follows from the fact that g(x) is strictly increasing in x,
and weakly homogenous, which implies that g(λx) = f(λ)g(x), for f : R+ → R+ such that
f(λ)
λ

is strictly increasing and f(0) = 0. With these properties, Fujimoto and Krause (1985)
show that there must exist a unique up-to-scale solution to wt = g(wt).

C.7 Deriving Expected Utility Expression

From equation (8), and the assumption that the mobility costs are zero for non-movers
(µnn = 0) we know that

mg
nn,t =

(
exp(βV g

n,t+1)
) 1
ν∑I

m=1

(
exp(βV g

m,t+1 − µ
g
mn)
) 1
νg

.

Taking logs at both sides we get

ln(mg
nn,t) =

1

νg

(
βV g

n,t+1

)
− ln

(
I∑

m=1

(
exp(βV g

m,t+1 − µgmn)
) 1
νg

)
.

.

From (7) we know that

V g
n,t = T̃gΦ

1
θ
Rgn,tr

α−1
Rn,t + νg ln

(
I∑

m=1

(
exp(βV g

m,t+1 − µgmn)
) 1
νg

)

which, along with the previous equation implies that

V g
n,t = T̃gΦ

1
θ
Rgn,tr

α−1
Rn,t + βV g

n,t+1 − νg ln(mg
nn,t).

Iterating this equation forward and substituting we obtain

V g
n,t =

∞∑
s=t

βs−t
[
T̃gΦ

1
θg

Rgn,sr
α−1
Rn,t − νg ln(mg

nn,s)

]
. (43)

92



C.8 Calibrating Additional Parameters

I fix Tl = 1, and I calibrate Th in order to equalize the average wage premium in the model
to the average average wage premium in the city according to the 2011 first quarter Na-
tional Household Survey (Encuesta Permanente de Hogares). Let ŴP = 1.69 be the observed
average wage premium, I calculate Th so that

ŴP =
Th
∑

i Φ
1/θh
Rih0λih∑

i Φ
1/θl
Ril0λil

, (44)

where
λig =

LgRi
LhRi + LlRi

.

This results in Th = 1.146.

In order to calculate {ρj}Jj=1, and {Aj}Jj=1, I first estimate {wgj0}Jj=1,g∈{h,l} using equation
16; the residential population vector for t = 0, {LgRi,t}, by skill type; and the employment
population vector for t = 0, {LgFj,t}, both of which are observed data. I calculate the
model-consistent wages following the algorithm used in Ahlfeldt et al. (2015). With this
wage vector, and the employment population at t = 0, I estimate the {ρj}Jj=1 from the
following equation:

L̃hFj0w
h
j0

L̃lF j0w
l
j0

=
1− ρj
ρj

,

and I estimate the vector of total factor productivities, {Aj}Jj=1, from the following equa-
tion:

Aj =

L̃lF j0wlj0
ρj

[(wlj0)ρj(whj0)(1−ρj)]σ−1

∑
i

∑
g∈{h,l}

αT̃g

(∑
s

(
wgs0
dis0

)θg) 1
θg

LgRi0

−1
1

σ−1

.

I will do this by first calculating

X =
∑
i

∑
g∈{h,l}

αT̃g

(∑
j

(
wgj0
dij0

)θg) 1
θg

LgRi0,
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and then calculating

Aj =

[
L̃lF j0w

l
j0

ρj
[(wlj0)ρj(whj0)(1−ρj)]σ−1 [X]−1

] 1
σ−1

for each j = 1, ..., J

C.9 Derivation of Estimating Equation for Migration Elasticities

From equation 8 we know that

ln(mg
nn,t) =

1

νg

(
βV g

n,t+1

)
− ln

(
I∑

m=1

(
exp(βV g

m,t+1 − µgmn)
) 1
νg

)
,

and

ln(mg
in,t) =

1

νg

(
βV g

n,t+1 − µin
)
− ln

(
I∑

m=1

(
exp(βV g

m,t+1 − µgmn)
) 1
νg

)
.

Which implies that

ln

(
mg
in,t

mg
nn,t

)
=

1

νg

(
β
(
V g
i,t+1 − V

g
n,t+1

)
− µin

)
,

so that

ln

(
mg
in,t

mg
nn,t

)
=

β

νg

(
T̃g

(
Φ

1
θ
Rgi,t+1r

α−1
Ri,t+1 − Φ

1
θ
Rgn,t+1r

α−1
Rn,t+1

)
+νg

(
ln

(
I∑

m=1

(
exp(βV g

m,t+2−µ
g
mi)
) 1
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)
− ln

(
I∑

m=1

(
exp(βV g

m,t+2−µgmn)
) 1
νg

))

− µin
β

)
.

(45)

Now consider that

ln

(
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in,t+1

mg
ii,t+1

)
= −µin

νg
+

(
ln

(
I∑

m=1

(
exp(βV g
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g
mi)
) 1
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)
− ln

(
I∑
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(
exp(βV g

m,t+2 − µgmn)
) 1
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))
,
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which implies that

νg ln

(
mg
in,t+1

mg
ii,t+1

)
+µin = νg

(
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exp(βV g

m,t+2 − µ
g
mi)
) 1
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)
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(
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(
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) 1
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))
.

Combining this result with the expression for ln
(
mgin,t
mgnn,t

)
derived above, we obtain

ln

(
mg
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1
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(46)
Taking expectation at time t of equation 46 we get

Et

[
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Which can be interpreted as the linear regression equation:

log

(
mg
in,t

mg
nn,t

)
= −µgin

1− β
νg

+
β

νg

[
T̃g

(
Φ

1
θg

Rgi,t+1r
α−1
Ri,t+1 − Φ

1
θg

Rgn,t+1r
α−1
Rn,t+1

)]
+β log

(
mg
in,t+1

mg
ii,t+1

)
+ωgt+1.

(47)
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D Supplementary Quantitative Results

D.1 Model Results at the Census Tract Level

Reduced Form (IV) Model

∆ log(hs share) ∆ log(hs shareBRT )−∆ log(hs shareCF )

∆ log(CMA) -2.308 ∆ log(CMABRT )−∆ log(CMACF ) -2.79
(0.522)*** (0.34)***

hs share0 0.113 hs share0 -0.05
(0.052)** (0.02)

∆ log(CMA) × hs sh. avg.0 4.143 ∆ log(CMABRT )−∆ log(CMACF )× hs share0 5.66
(0.847)*** (0.65)***

cons -0.419 cons -0.01
(0.036)*** (0.01)

N 2,282 N 2,282

Table D.1: Reduced form results versus model estimation at census tract level. The left-
hand side shows the results from column 4 of table 4, while the right-hand side shows the
results from the difference in difference estimation within the model at the census tract
level, comparing changes between t = 0, and t = 0, and between the model with the BRT
system, and the counterfactual without a BRT system put in place. Robust standard errors
in parentheses. * p<0.10, ** p<0.05, *** p<0.01.

D.2 Calculations for GDP Gains Net of Construction Costs

Let Xt be the aggregate income in the city at time t,

∑
i

∑
g∈{h,l}

αT̃g

(∑
j

(
wgj,t
dij,t

)θg) 1
θg

LgRi,t.

We can calculate the net present value of the benefits of the Metrobus, net of construction
costs by calculating the discounted sum of the excess growth in aggregate income in the
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city and subtracting the discounted sum of the construction costs:

NPVGDP gains =

[
∞∑
t=0

βt

(
Xt

X0

− X̂t

X0

)]
GDP0 −

4∑
t=0

Ct.

Where X̂t is the aggregate income at time t under the counterfactual scenario where no
BRT was put in place, GDP0 is the two year GDP for 2010 and 2011 for the city of Buenos
Aires, and Ct is the estimated construction cost measured in 2010 dollars for the bi-annual
period that corresponds to each period t in the model. These construction costs are es-
timated by taking the average construction cost per kilometer, obtained from AGCBA
(2015), and AGCBA (2019), and multiplying this number by the total number of kilome-
ters built in each bi-annual period. Table D.2 shows the resulting estimated values. Once a
net present value is obtained (measures in 2010 dollars), I calculate the fifty-year annuity
payment that would lead to the same net present value, at an annual discount rate of β− 1

2 ,
and express this annuity payment in terms of the city’s 2010 GDP.

NPV of benefits of BRT (mm US dollars 2010) 13387
NPV of Construction Costs (mm US dollars 2010) 121
NPV of net gains of BRT (mm US dollars 2010) 13266
NPV gains as 2010 GDP constant growth equivalent (%) 0.4

Table D.2: Net present value of GDP gains from the Metrobus lines built between 2011 and
2017, net of construction costs.
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